

Prepared for;

Jennings O'Donovan

Inchamore Windfarm (IWF)

Site Investigation Report & Peat & Subsoil Stability Risk Assessment

603679 IWF EIAR App. 8.1 SI & PSSRA (02)

RSK GENERAL NOTES

Project No.: 603679 (02)

Title: Site Investigation & Peat & Subsoil Stability Risk Assessment Report

Client: Jennings O'Donovan

Date: 03/04/2023

Office: RSK Dublin

Status: (03) FINAL

Author Lissa Colleen McClung Technical reviewer Sven Klinkenbergh

Signature Signature

Date: 03/04/2023 Date: 26/04/2023

RSK (Ireland) Ltd (RSK) has prepared this report for the sole use of the client, showing reasonable skill and care, for the intended purposes as stated in the agreement under which this work was completed. The report may not be relied upon by any other party without the express agreement of the client and RSK. No other warranty, expressed or implied, is made as to the professional advice included in this report.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by RSK for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report assumes that all relevant information has been supplied by those bodies from whom it was requested.

No part of this report may be copied or duplicated without the express permission of RSK and the party for whom it was prepared.

Contents

mder	6 6 6 12 15
Morks & Methods Ompleted Y Risk Assessment Methodology Sility Risk Assessment Methodology Ons Story Tate Topology	6 6 6 12 15
Morks & Methods Impleted Impl	6 6 6 12 15 15
works & Methods Impleted	6 12 15 15
ompleted	6 12 15 15
ompleted	6 12 15 15
Prate Topology	
ONS story rate Topology	12 15 15
rate Topology	15 15 15
rate Topology	15 15 15
rate Topology	15 15
rate Topology	15
	15
	16
Data & Results	17
	17
ssessment Results	18
ssessment Interpretation	25
Assessment Results	27
Assessment Interpretation	28
	30
nmendations	32
	33
	ssessment Results ssessment Interpretation Assessment Results Assessment Interpretation mmendations

List of Appendices

SI Appendix	Title
SI Appendix A	Peat Depth Probing Locations
SI Appendix B	Peat Depth & Subsoil Databases
SI Appendix C	Trial Pit & Borehole Locations
SI Appendix D	Trial Pit Logs
SI Appendix E	Trial Pit and Site Photos
SI Appendix F	Borehole Logs & Bedrock Core Testing Laboratory Certificates
SI Appendix G	Subsoil Testing - Laboratory Certificates
SI Appendix H	Register of Geo-Hazards
SI Appendix I	Peat and Subsoil Stability Risk Assessment

1. Introduction

1.1 Background

RSK Ireland was commissioned by Jennings O'Donovan & Partners (JOD, the Client) on behalf of Inchamore Wind DAC (the Developer/s) to assess the geological site characteristics in relation to the planning application for the Inchamore Wind Farm (IWF, the Development) in Co. Cork.

1.2 Purpose

Site Investigation for the purposes of assessing ground conditions at EIA design phase of a proposed wind farm development, Inchamore Wind Farm, Co. Cork. Assessing ground conditions in terms of peat and slope stability risk, subsoil and geological characterisation and classification.

1.3 Scope of Works – Tender

The scope of works was initially specified by the Developer at tender phase. The scope of works for ground investigations at tender included the following works;

- Peat probing (50 m grid), 50 ha
- Trial pits, 35 no.
- Number of groundwater monitoring wells, 4 no.
- SI report with detailed findings, records and interpretation

Provisional works included;

- Gouge auger samples
- Boreholes up to 15 m, 5 no.
- Ground penetrating radar surveys (5 days)

In consultation with the Client and Developer the scope of works was adapted to the site based on observations made by desk study and initial site walk overs and assessments. The actual completed scope of works is detailed in **Section 2**.

This work has been carried out in unison with the EIAR for the Project. Therefore, this report will be appended to **EIAR Chapter 8 - Soils & Geology** as part of the planning application for the Project. The EIAR tender scope includes for a stand-alone Peat Stability Report as well as stand alone Site Investigation report, however the two will be merged in this Site Investigation report. This is done with a view streamlining the site geological assessment.

Further to the above, the geological or environmental setting of the site will be described in detail in **EIAR Chapter 8 – Soil & Geology** with appended maps and graphics for reference. This report will refer and summarise the EIAR chapter/s to avoid duplication of information or graphics. This report will also reference **EIAR Chapter 9 – Hydrology & Hydrogeology** in relation to groundwater.

1.4 Statement of Authority

RSK (Ireland) Ltd. (RSK), part of RSK Group, is a consultancy providing environmental services in the hydrological, hydrogeological and other environmental disciplines. The company and group provide consultancy to clients in both the public & private sectors. More information can be found at www.rskgroup.com. The principal members of the RSK EIA team involved in this assessment include the following persons;

- Sven Klinkenbergh B.Sc. (Environmental Science), P.G.Dip. (Environmental Protection) Associate, Project Manager and EIA Lead Author with c. 10 years industry experience in the preparation of hydrological, hydrogeological and geological reports..
- Project Scientist: Lissa Colleen McClung B.Sc. (Hons.) Environmental Studies, M.Sc. (Hons.) Environmental Science. Current Role: Graduate Project Scientist
- Project Scientist: Mairéad Duffy B.Sc. (Environmental Science), M.Sc. (Climate Change). Current Role: Graduate Project Scientist

2. Site Investigation Works & Methods

2.1 Scope of Works – Completed

The completed scope of works included;

- Peat depth probing, approx. 150 no. sampling locations.
- Trial pits, 16 no.
- Sub-soil sampling and Particle Size Distribution analysis, 4 no.
- Drilling Rotary Core, 1 no.
- Drill core sample analysis. Point Load (PL) and Unconfined Compression Test (UCS).

2.2 Peat & Slope Stability Risk Assessment Methodology

2.2.1 Key assessment principals

The site assessment is carried out following key principals in line with relevant guidance, namely;

- BS 5930:2015+A1:2020 Code of Practice for Site Investigations.
- Scottish Government (2017) Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments

Some key insights to application and interpretation are provided from numerous documents, in particular;

• N. Boylan, P. Jennings & M. Long (2008) Peat slope failure in Ireland. Quarterly Journal of Engineering Geology and Hydrogeolog.

2.2.1.1 BS 5930 - Code of Practice for Site Investigations

This document explains the important steps to be taken in preparing for, scoping, and executing site investigations of various nature. The standard covers the following aspects:

- Planning: This section provides guidance on the planning of site investigations, including the purpose of the investigation, the scope of work, and the selection of appropriate investigation techniques.
- Desk Study: This section provides guidance on the collection and review of existing information, such as geological maps, site records, and historical data, that can aid in the planning and execution of site investigations.
- Site reconnaissance: This section provides guidance on the preliminary site visit to collect data on site characteristics and conditions.
- Investigation methods: This section provides guidance on the selection of appropriate investigation methods, such as drilling, sampling, and testing techniques, based on the site characteristics and the purpose of the investigation.
- Field testing: This section provides guidance on the execution of field testing, such as in-situ testing, geophysical surveys, and environmental testing.
- Laboratory testing: This section provides guidance on the selection and execution of laboratory testing, such as soil and rock testing, and the interpretation of laboratory results.
- Reporting: This section provides guidance on the reporting of site investigations, including the
 presentation of data, the interpretation of results, and the conclusions and recommendations.

Scoping site investigations and sampling regime in terms of sampling locations and frequency is an important and dynamic process. While BS 5930 details sampling frequency in terms of soil and rock geotechnical and environmental testing, standard provides guidance on the spacing and frequency of sampling points, which may vary depending on the site conditions, the purpose of the investigation, and the type of sampling method being used. It is important to scope and align appropriate methodologies and sampling regime with specific objectives and within specific environments, including Peat & Slope Stability Risk Assessments in peatland areas.

2.2.1.2 Scottish Government (2017) Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments

The Scottish Government's Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments is a document that provides guidance on the assessment of landslide

hazard and risk in peatland areas, particularly in relation to proposed electricity generation developments. The document is published and written in context of Scottish peatlands, however in the absence of relevant guidance, it is widely accepted as relevant guidance in Ireland.

The guide emphasizes the need for a comprehensive assessment of landslide hazard and risk in peatland areas, which is particularly important due to the unique characteristics of these environments. Peatlands are often found in areas of high rainfall, and the accumulation of peat can result in unstable ground conditions, which can increase the risk of landslides.

The guide provides a step-by-step approach to landslide hazard and risk assessment, including the identification of potential landslide triggers, the characterization of the peatland environment, the assessment of landslide susceptibility, and the estimation of landslide hazard and risk. The guide also provides guidance on the selection of appropriate methods for landslide hazard and risk assessment, such as field mapping, remote sensing, and numerical modelling. The guide emphasizes the importance of stakeholder engagement and communication in the landslide hazard and risk assessment process, particularly in relation to proposed electricity generation developments, which can potentially have significant impacts on the surrounding environmental receptors and communities. The guide covers the following aspects which should be included in the site risk assessment;

- Sampling Regime: The guide recommends a sampling regime that includes both surface and subsurface surveys, using techniques such as; depth probing, gouge coring, trialpitting, drilling, and geophysical surveys. The aim is to obtain a comprehensive understanding of the geology and hydrogeology of the site, as well as the depth and condition of the peat layer.
- Assessment of Desk Top Data: The guide recommends an assessment of desktop data to identify
 potential sources of instability, such as steep slopes, drainage features, and areas of peat degradation.
 This assessment should be based on available data sources such as geological maps, aerial
 photographs, and LiDAR data.
- Degree of Geomorphological Assessment: The guide recommends a high degree of geomorphological
 assessment, using methods such as aerial photography interpretation and field mapping to identify
 potential instability features such as landslides and erosion channels. Many sources of data can input to
 the interpretation of stability risk at any particular location, and field reconnasance is also a valuable tool
 in this repsect.
- Interpretation of Data: The guide recommends a detailed interpretation of all data collected, including the results of field surveys and laboratory testing. This should involve the identification of key parameters such as peat depth, soil properties, and groundwater levels or saturation, as well as the integration of all available data to develop a comprehensive understanding of the potential for instability. This can result in screening out peat stability risk, for example; in areas of extensive shallow bedrock or bedrock outcrops, or areas with very minor inclines. Conversly, high risk areas can potentially be identified by desk top assessment alone, for example; steep slopes in excess 15 degrees, or areas with historical stability issues or historic landslides.
- The development of numerical models for peat stability risk assessments has been driven by advances in computer technology (e.g. QGIS) and modeling techniques, as well as an increased awareness of the risks associated with peat instability. The use of numerical modeling in peat stability risk assessments typically involves the following steps:
 - Development of a conceptual model: This involves the development of a conceptual model of the site based on the results of field investigations and laboratory testing. The conceptual model should include information on the geometry and properties of the peat layer, as well hydrogeological characteristics such as pore water pressure or bul unit weight (saturation).
 - Selection of appropriate modeling techniques: There are a variety of modeling techniques that
 can be used to simulate peat stability, including finite element and finite difference methods. The
 selection of an appropriate modeling technique will depend on the specific characteristics of the
 site and the goals of the assessment.
 - Calibration and validation of the model: The model is calibrated and validated using data collected during field investigations and laboratory testing. This involves adjusting model parameters to improve the match between simulated and observed data.

Overall, the guide emphasizes the importance of a comprehensive and integrated approach to peat landslide hazard and risk assessments, which includes a thorough sampling regime, an assessment of desktop data, a high degree of geomorphological assessment, and a detailed interpretation of all data collected. By following these guidelines potential hazards and risks associated with peat instability can be identified and managed effectively.

2.2.2 Desktop baseline characterisation & approach

The site and proposed development are assessed using QGIS mapping software with relevant environmental data layers published by relevant bodies including; EPA, and GSI.

Open source Global Digital Elevation Model (DGEM) data is used to determine the general nature of the topography at the site, including interrogating elevation data to determine slope inclines across the site.

Areas of the site undergo preliminary risk assessment and development constraints are identified and mapped. This will include slope inclines >8 degrees, 50m and 150m surface water or other environmental receptor buffers, etc. This data is used to inform the initial design phase of a project and to scope the site survey and sampling regime.

On completion of the initial phases of site surveys, georeferenced data is compiled and mapped in QGIS along with the initial desktop data. The site undergoes further preliminary risk assessment, preliminary modelling and constraints are updated and the process repeats i.e. phase 2.

Other environmental data, including peatland ecological data is incorporated where relevant.

2.2.3 Peat depth probing & topography assessments

Peat depth probing was undertaken at the site including at each proposed potential turbine location, at proposed locations for other infrastructure, and elsewhere on site where desktop assessment could not screen out stability risk.

Depth probing was conducted using a fibreglass depth probe and at each survey point the depth of peat, local incline (incline within a c. 5-10 m radius of the survey point) and grid reference (Irish Grid) were recorded. Notes on observations were also recorded including time of taking photographs, presence of drains etc.

A number of inferred peat depth probe points with a value of 0.5m, distributed in 2 no. transects at proposed turbine location T2. The inferred transects are intended to assess variability of peat stability corresponding with variability of incline, and to risk assess stability in close proximity to sensitive receptors.

2.2.4 Peat gouge coring & qualitative assessments

Gouge coring of peat was carried out to a limited extent (peat depth generally shallow). Peat quality assessment were made at existing cuttings and during trial pitting.

2.2.5 Piezometer installation & groundwater assessments

Not applicable. Peat depth at the site observed to be shallow generally at the site.

2.2.6 Topography & substrate topology

Using available topographical data provided for the site and peat thickness / depth data obtained during MEL surveys, the topology (characteristics of a surface) of the substrate underlying the peat on site was assessed and cross sections generated to evaluate variance from the surface topology.

2.2.7 Peat stability numerical assessment

This stability assessment has been undertaken using a relatively simple infinite slope stability approach (Boylan, N, and Long, M, 2012) (derived from Bromhead's formula (Scottish Gov., 2017)), as follows;

$$FoS = \frac{cu}{yz\sin\alpha\cos\alpha}$$

For the purpose of this assessment, the above formula will be referred to as the FoS Formula.

Qualifying peat stability at all peat survey points and trial pit locations was done using the following parameters;

Table 1: Formula Parameters & Symbols

Symbol	Description	Unit
FoS	Factor of Safety	FoS
Cu	Effective cohesion or Undrained Shear Strength	kPa
у	Bulk Unit Weight of Peat	kN/m3
z	Depth to failure plain	m
α	Slope Angle	Degrees

The Factor of Safety (FoS) result will range from 0 to infinity, however the following ranges are prescribed ratings as follows;

Table 2: Factor of Safety (FoS) Classifications (Scottish Gov., 2017)

Description	FoS Value Range	Classification
Stable	>1.3	Acceptable
Marginally Stable	1.0 > < 1.3	Acceptable
Unstable	<1.0	Unacceptable

As per the guidance listed in Section 2 of this report, FoS values of 1.0 or greater are considered acceptable in terms of peat stability (Scottish Gov., 2017).

The assessment has been completed on the basis of 2 no. scenarios, which are as follows;

- 1. Scenario A Peat stability in terms of the receiving environment as is, that is using the depth of peat observed and recorded during site surveys.
- 2. Scenario B Peat stability in terms of the in-situ peat with 1m fill (presumed peat) placed on top, that is using the depth of peat observed and recorded during site surveys plus 1 metre fill (depth + 1.0m). This is the assessment worst case scenario, and this will be used to assess stability at proposed infrastructure locations.

Undrained shear strength (effective cohesion) (c_u) has been derived by means of assessing moisture content results, which is; there is a correlation between peat moisture content and shear strength (effective cohesion). Shear vane testing has been carried out on the site however, shear vane test, or in situ barrel shear tests are not considered representative of shear strength characteristics of the peat being assessed in terms of stability assessment given numerous flaws with the test itself, namely; the shear vane test evaluates the shear strength where by the force is exerted in a vertical and cylindrical plane, which is not indicative of forces at play with respect slope stability or mass movement; and fibres and roots within the peat will effect the test itself, potentially exaggerating, or giving misleading data. The following graph presents conceptual shear strength values for peat (Boylan N, Jennings P & Long M., 2008).

Figure 1: Correlation Between Moisture Content and Shear Strength of Peat (N. Boylan, P. Jennings & M. Long, 2008)

The following table presents the typical minimum, average and maximum moisture content which been used to determine indicative shear strength values for the Site.

Table 3: Peat Moisture Content Range & Indicative Shear Strength

Category	Moisture Content (%)	Indicative Shear Strength (kPa)
Minimum	200	>20
Average	750	10-20
Maximum	1500	<10

For the purpose of assessing peat stability for the Site a conservative undrained shear strength (effective cohesion) value will be used in numerical assessments, i.e., 3.5 kPa.

In situ bulk density (kg/m³), or bulk unit weight (kN/m³) of peat (y) is typically within the range of 900-1100 kg/m³ (Munro R, 2004), or 8.8-10.8kN/m³. For the purpose of assessing peat stability for the Site a conservative bulk unit weight value will be used in numerical assessments i.e., 11kN/m³.

The depth to failure plane (z) is presumed to be thickness or depth of peat at any given sampling point being assessed, however it should be noted that the failure plane can potentially be within peat (peat on peat movement), or the substrate i.e., weathered rock or underlying soils.

Slope angle (α) is presumed to be topographical incline measured on site / evaluated using high resolution elevation data at any given sampling point being assessed, however it should be noted that the slope angle (α) relates to the failure plane angle, which is presumed to be the peat and substrate interface, and which is presumed to be parallel to the surface when using FoS Formula (Infinite Slope Formula). In reality the underlying substrate is unlikely to be parallel to the surface topology.

It should be noted that FoS Formula does not account for forces related to the toe and head of an area or mass of soil with the potential for mass movement, which is; in reality the Infinite Slope formula will likely exaggerate stability conditions negatively.

The following table lists parameter values, including inferred conservative parameter values used in numerical assessments.

Table 4: Formula Parameters, Symbols & Inferred Conservative Values

Symbol	Description	Value	Unit
Cu	Effective cohesion	3.5	kPa
у	Bulk Unit Weight of Peat	11	kN/m3
z	Depth to failure plain	Depth of Peat	m
α	Slope Angle	Surface Topography	Degrees

2.2.8 Risk Matrices & Ranking

In assessing the risk in relation to peat stability on site it is important to rate the risk in terms of the hazard, the likelihood and the consequences if any such issue should arise. Therefore, the slope stability risk assessment considers the following parameters, which are assessed by means of a series of risk matrices (Scottish Gov., 2017).

Table 5: Parameters Included in Risk Matrices and Assessed

Category	Description	
Landslide History	Considers the likelihood of landslide events occurring based on the history of the site, including the current site use.	
Factor of Safety	As described above, includes the following;	
	Peat depth	
	Peat quality / condition	
	Moisture content	
	Incline (surface topography)	
	Shear strength	
	Bulk unit weight of peat	
Substrate Topology	Identifying and qualifying variance in substrate topology and qualifying variance from theory underlining the stability formula used i.e., Infinite Slope (Parallel and no foot and head forces)	
Significance of Receptor	Qualifying potential receptors in terms of significance.	
Distance to Receptor	Qualifying localised proposed development areas in terms of distance to nearest receptor.	

Considering the above parameters, the stability assessment follows the following steps;

- FoS_{RAW} Assess the site in terms of soil stability using the FoS Formula and calculate a Factor of Safety (FoS) using the *raw* data. This step is considered as preparation of the data obtained for the site i.e., translating the data to a value related to stability, and is not considered the final output of the stability assessment.
- 2. FoSadjusted Assess the FoSraw values in terms of suitability of the application of FoS Formula by considering the history of landslides in relation to the proposed site, and the topology of the substrate compared to the surface topology of the site. This is done by means of a risk matrix which qualifies the point, and also applies a coefficient for the next risk assessment step.
- 3. Risk Ranking RRsf The FoSadjusted data is assessed in terms of significance of associated receptor. This is done by means of a risk matrix which qualifies the point, and also applies a coefficient for the next risk assessment step.
- 4. Risk Ranking RR_D The RR_{SF} data is assessed in terms of distance to associated receptor. This is done by means of a risk matrix which qualifies the point.

Results and conclusions made by means of the above risk assessment are viewed as two tiered, that is;

- The likelihood of a stability issue or landslide while considering the significance of the receptor (RRsF).
- 2. The consequence of a stability issue or landslide while considering the distance to the receptor (RR_D).

For example, (1) The risk of a stability issues or landslide occurring at location X and impacting on receptor Y is negligible. (2) Considering the short distance from location X to receptor Y, in the unlikely event that an issue did arise the risk of adverse impacts effecting receptor Y is moderate.

Risk Matrices are presented in Appendix I.

2.2.9 Interpretation of Results.

Results of the numerical stability risk assessment are modelled / mapped and interrogated in the context of site topography, site conditions, the Project and receptor sensitivity and susceptibility. Interpretation of results in the context of the development, activity and any potential consequences is an important step of the slope stability risk assessment. It is important to consider groups of data sets and site-specific dynamics at a particular location (for example, at a proposed turbine location) and to qualitatively risk assess stability in the context of all observed site characteristics, including topography, substrate topology, geology, hydrogeology, and hydrology, etc. For example; data might indicate a single point of unacceptable FoS / stability, however this needs to be considered in context of neighbouring data and actual site conditions, such as the presence of deep peat within a localised basin confined by shallow bedrock at the surface at neighbouring points, that is; deep, "unstable" peat (by numerical model) observed to be confined by shallow bedrock does not equate to an elevated risk of a catastrophic landslide event occurring, but does equate to potential localised stability issues arising if excavating at that particular location with deep peat.

In turn, any potential stability hazard must be considered in risk assessments in terms of potential consequences to receptors, and not simply likelihood of a stability issues arising. For example, in an area with low risk in terms of stability or Factor of Safety (FoS), but immediately and directly upgradient of a sensitive receptor such as a surface water body, in the unlikely event (low risk = acceptable FoS) that a significant stability issue should arise, due to the proximity to the receiving receptor the consequences of such an event have the potential to be significant.

The following table presents the interpretation of stability risk assessment data in the context of stability, or factor of safety (FoS) (Adjusted, Scenario B) at each significant development infrastructure unit.

2.3 Subsoil & Slope Stability Risk Assessment Methodology

2.3.1 Subsoil stability numerical assessment

This stability assessment has been undertaken in a similar manner to the peat stability assessment. However, due to the limited data available (compared to number of peat depth probing locations) qualifying stability in subsoils at the Site will infer data obtained at nearest neighbour trial pit locations.

Subsoils observed on site generally are classified as follows;

• Clayey, silty, sandy, GRAVEL (or TILL) with coobles and boulders.

The undrained shear strength observed in till subsoils at the Site ranged from 15 to 180kPa (**Appendix B**). This data is not considered highly reliable due to numerous site-specific factors including particle size distribution of subsoils, particularly with high gravel / cobble content in this instance.

The undrained shear strength for inorganic silty sandy soils is typically in the range of 50 to 75kPa but is highly variable depending on the particular particle sizes and their character comprising the soil. It should be noted saturation / pore water pressure can also dramatically impact and reduce shear strength, or cohesion values in soils.

For the purpose of assessing subsoil stability for the Site a conservative undrained shear strength (effective cohesion) value will be used in numerical assessments, i.e., 40 kPa.

In situ bulk density (kg/m³), or bulk unit weight (kN/m³) of soils/subsoils (y), namely silty sandy subsoils, is typically within the range of 2500 to 2700 kg/m³, or 24.5 to 26.5 kN/m³. For the purpose of assessing subsoil stability for the Site a conservative bulk unit weight value will be used in numerical assessments i.e., 27 .0 kN/m³.

The depth to failure plane (z) is presumed to be thickness or depth of subsoils at any given sampling point being assessed. However, subsoil depths will be inferred in areas of the site with limited data. It should be noted that the failure plane can potentially be within subsoils (subsoil on subsoil movement), or the substrate i.e., weathered bedrock. In relation to the Site specifically, it is important to note the presence of iron pan. Iron pan is a layer of oxidised iron within the subsoil. The iron pan layer is relatively impermeable which can impede or significantly alter groundwater movement in the subsoils. Under the right circumstances the iron pan layer can therefore become a slip or failure plane. In such instances the failure plane has the potential to parallel to the overlying topography.

Slope angle (α) is presumed to be topographical incline measured on site / evaluated using high resolution elevation data at any given sampling point being assessed, however it should be noted that the slope angle (α) relates to the failure plane angle, which is presumed to be the peat and substrate interface, and which is presumed to be parallel to the surface when using FoS Formula (Infinite Slope Formula). In reality the underlying substrate (bedrock) is unlikely to be parallel to the surface topology. However, considering the presence of iron pan in subsoils at the site it is important to consider the potential for parallel failure planes when assessing stability at the site.

It should be noted that FoS Formula does not account for forces related to the toe and head of an area or mass of soil with the potential for mass movement, which is in reality the Infinite Slope formula will likely exaggerate stability conditions negatively.

The following table lists parameter values, including inferred conservative parameter values used in numerical assessments.

Table 6: Formula Parameters, Symbols & Inferred Conservative Values

Symbol	Description	Value	Unit
Cu	Effective cohesion	40	kPa
у	Bulk Unit Weight of Peat	27.0	kN/m3
Z	Depth to failure plain	Depth of subsoil to bedrock	m
α	Slope Angle	Surface Topography	Degrees

2.3.2 Risk Matrices & Ranking

In assessing the risk in relation to subsoil stability on site it is important to rate the risk in terms of the hazard, the likelihood and the consequences if any such issue should arise. Therefore, the slope stability risk assessment considers the following parameters, which are assessed by means of a series of risk matrices (Scottish Gov., 2017)

Table 7: Parameters Included in Risk Matrices and Assessed

Category	Description
Landslide History	Considers the likelihood of landslide events occurring based on the history of the site, including the current site use.
Factor of Safety	As described above, includes the following;
	Subsoil depth (to failure plain)

	17

Category	Description	
	Subsoil composition (PSD)	
	Moisture content	
	Incline (surface topography)	
	Shear strength	
	Bulk unit weight of subsoil	
Substrate Topology	Identifying and qualifying variance in substrate topology and qualifying variance from theory underlining the stability formula used i.e., Infinite Slope (Parallel and no foot and head forces)	
	For the purposes of considering worst case conditions (the potential for iron pan and parallel failure plains), substrate topology is considered parallel.	
Significance of Receptor	Qualifying potential receptors in terms of significance.	
Distance to Receptor	Qualifying localised proposed development areas in terms of distance to nearest receptor.	

Considering the above parameters, the stability assessment follows the following steps;

- 5. FoS_{RAW} Assess the site in terms of soil stability using the FoS Formula and calculate a Factor of Safety (FoS) using the *raw* data. This step is considered as preparation of the data obtained for the site i.e., translating the data to a value related to stability, and is not considered the final output of the stability assessment.
- 6. FoS_{ADJUSTED} Assess the FoS_{RAW} values in terms of suitability of the application of FoS Formula by considering the history of landslides in relation to the proposed site, and the topology of the substrate compared to the surface topology of the site. This is done by means of a risk matrix which qualifies the point, and also applies a coefficient for the next risk assessment step.
- 7. Risk Ranking RRsf The FoSadusted data is assessed in terms of significance of associated receptor. This is done by means of a risk matrix which qualifies the point, and also applies a coefficient for the next risk assessment step.
- 8. Risk Ranking RR_D The RR_{SF} data is assessed in terms of distance to associated receptor. This is done by means of a risk matrix which qualifies the point.

Results and conclusions made by means of the above risk assessment are viewed as two tiered, that is;

- 1. The likelihood of a stability issue or landslide while considering the significance of the receptor (RRsF).
- 2. The consequence of a stability issue or landslide while considering the distance to the receptor (RR_D).

For example, (1) The risk of a stability issues or landslide occurring at location X and impacting on receptor Y is negligible. (2) Considering the short distance from location X to receptor Y, in the unlikely event that an issue did arise the risk of adverse impacts effecting receptor Y is moderate.

Risk Matrices are presented in Appendix I.

3. Baseline Conditions

3.1 Site Description & History

There no recorded landslide events in close proximity to the Site (GSI, Accessed 2021).

There were no indications of stability issues or mass movement observed on the Site during site surveys.

The Site is mapped as having areas ranging from Low Risk to High Risk in terms of Landslide Stability, that is; full spectrum of slope stability risk categories (GSI, ND). Larger areas of High-Risk landslide susceptibility are associated with relatively expansive steep slopes.

Refer to EIAR baseline section for further information (Chapter 8: Soils and Geology).

3.2 Site Geology

Consultation with Geological Survey Ireland Spatial Resources (GSI) indicates that the bedrock at 1:1,000,000 scale the Site is underlain by;

• Gun Point Formation (GP) – Green-grey to purple medium to fine-grained sandstones, interbedded with green and red to purple siltstones to fine sandstones.

The region contains a multitude of complex geological features however, there are no mapped faults or other significant features underlying the area of the Site.

Rocky outcrops are common within the Site Boundary.

Refer to EIAR baseline section for further information (Chapter 8: Soils and Geology).

3.3 Site Soils & Subsoils

Consultation with available maps (GSI) indicate that the soil type across the entire area of the Site, and the general area in the region is mostly Blanket Peat and Till derived from Devonian sandstones with several significant areas mapped as being Bedrock at Surface.

Peat depths observed on the Site are generally 'Rock' to 'shallow' with isolated pockets of moderately deep peat, however depths at most sampling points are within the range of 0.0-0.5 m and areas with deeper, particularly extremely deep peat have been avoided in terms of the Project footprint. Peat depths are mapped and presented in **Appendix A**.

Peat quality assessment (by gouge coring / trial pitting / observations at cut locations) indicate relatively moderate to high Von Post values (generally H5 to H8) across the Site.

Refer to EIAR baseline section for further information (Chapter 8: Soils and Geology).

3.4 Topography & Substrate Topology

The topography at and in the immediate area surrounding the Site is highly variable with multiple peaks, ridges with variable elevations and inclines. At lower elevations the topography is relatively flat or comprising of low magnitude inclines, however at mid and high elevation relative to the Site, steep high magnitude inclines are commonplace.

Site observations indicate that the substrate topology varies significantly to surface topology. Highest rates of variance are associated with areas which include deeper peat, that is; areas of deeper peat are contained with "pockets" delineated by areas or ridges of shallow bedrock. Areas with generally shallower peat have less variance from the substrate however such areas are indicatively low risk in terms of stability given the peat is shallow.

3.5 Hydrology & Climate

Three (3no.) mapped rivers run through and directly adjacent to the Site. Several extensive constructed drainage channels associated with forestry, agriculture and peat cutting activities exist at the site.

Refer to EIAR baseline section for further information (Chapter 9: Hydrology and Hydrogeology).

3.6 Receptors

Receptors associated with the Project footprint are generally limited to non-critical infrastructure and water bodies.

Receptors associated with the Project, which is; streams, rivers, lakes and groundwater, are considered highly sensitive receptors considering;

- 'Good' WFD River status and objective to protect same.
- 'Moderate' WFD Lake (Carrigdrohid) status and objective to restore same to at least good status by 2027.
- The numerous downgradient designations (sensitive protected areas) associated with each of the two
 associated catchments and the sensitive habitats and species associated with same.
- Designation of some downgradient surface water bodies and all groundwater bodies as sources of drinking water (Sullane_050).

Ultimately, all surface water and groundwater associated with the Site is considered sensitive and must be protected.

Risk to receptors must consider both the hazard, and likelihood of adversely impacting on any given sensitive receptor, and therefore parameters such as; distance from potential source of hazard to receptor, pathway directness and/or connectivity, and assimilative capacity of the receiving water body should also be considered.

Distance of proposed turbine and hard stand areas have been assessed in terms of distance to associates receptors (surface water features), the results for which are presented in **Appendix I.**

Refer to EIAR baseline section for further information (Chapter 9: Hydrology and Hydrogeology).

4. Site Investigation Data & Results

4.1 Peat Depth Data

Approximately 150 no. peat depth probe locations were assessed at the Site. Georeferenced and categorized peat depth locations are presented in **Appendix A**. Peat depth data is presented in **Appendix B**. Number of probe locations by Depth Category are presented in **Table 8**.

Table 8: Peat Depth Probe Points per Depth Category

Peat Depth Category	No.
A – Rock (0.00-0.01 m)	16
B - Very Shallow (0.01-0.5 m)	92
C - Shallow (0.5-2.0 m)	66
D - Moderately Deep (2.0-3.5m)	12
E - Deep (3.5-5.0 m)	1
F - Very Deep (>5.0 m)	0
TOTAL	187 (21 Inferred)

4.2 Trial Pit Data

A total of 16 no. Trial Pits were completed, logged and sampled at the Site. Trial Pit and Borehole locations are presented in **Appendix C**. Trial Pit Logs are presented in **Appendix D**. Trial Pit and Site Investigation Photos are presented in **Appendix E**. A total of 3 no. subsoil samples were obtained from the Site and tested for particle size distribution (PSD). Subsoil laboratory certificates are presented in **Appendix G**.

Particle Size Distribution (PSD) Soil Description results for subsoils (BS 1377: Part 2: 1990: Clause 9) at the site are presented in **Table 9**. Note: cobble size particles observed on trial pit log sheets and have likely been screened out to a degree at the time of sampling.

Table 9: Reported Subsoil Description (PSD)

Sample ID	Cobbles (%)	Gravel (%)	Sand (%)	Silt & Clay (%)	Description
TP03-A2 (SS1)	0.0	43.0	32.0	25.0	Very clayey very sandy GRAVEL
TP08-A2 (SS1)	0.0	50.0	19.0	31.0	Slightly sandy gravelly CLAY
TP11-A2 (SS1)	0.0	51.0	26.0	22.0	Very clayey very sandy GRAVEL

Cobbles were observed on site and were likely screened out at the time of sampling. Further details are presented in **Appendix D**. Iron pan was observed in several trial pits as listed in **Appendix H**, and presented in **Appendix C**, **Appendix D** and **Appendix E**.

4.3 Borehole Data

A total of 1 no. rotary core borehole was completed, logged, and sampled at the Site. Borehole logs are presented in **Appendix F**. Drill logs indicate that;

- Bedrock underlying the site is described as SILTSTONE (BH01I)
- Bedrock shows minor signs of weathering.
- Driller notes water strike at BH01I at ~2.50m bGL likley perched groundwater on top of unweathered bedrock.

Siltstone is mainly comprised of silt-sized particles. Silt-sized particles range between 0.002 and 0.063 millimeters in diameter (BS 5930). They are intermediate in size between coarse clay on the small side and fine sand on the large side.

Bedrock cores obtained were tested for Unconfined Compressive Strength (UCS) and Point Load Strength (PL). Rock core testing laboratory certificates are presented in **Appendix F**. Unconfined Compressive Strength (UCS) results presented in **Table 10** indicate bedrock underlying the site is considered weak.

Table 10: Bedrock Core Laboratory Strength Testing Results

Parameter	(Unit)	BH01I
UCS Results	Kn	23.3
UCS Results	MPa	5.17
Rock Strength (UCS	BS 5930	Weak
MPa)	BS EN ISO 14689	

4.4 Peat Stability Risk Assessment Results

Review of peat stability assessment result data and maps as presented in **Appendix I** indicate that the factor of safety is generally acceptable and very low to low stability risk across the site with the exception of minor isolated areas or pockets of deeper peat.

Summary of risk at the site under varying conditions and scenarios is presented in in the following tables.

Table 11: Factor of Safety (Adjusted) at Peat Probe Locations

	Acceptable	Marginally Stable	Unstable
FoS (Adj.) Scenario A	149	1	0
FoS (Adj.) Scenario B	118	24	8

Table 12: Risk Ranking (Distance) at Peat Probe Locations

	Very Low	Low	Moderate	High
RR (Dist.) Scenario A	104	11	34	1
RR (Dist.) Scenario B	81	27	37	5

Areas of elevated stability risk, even at a localised scale, are considered geo-hazards requiring mitigation. Geo-hazards are presented in **Appendix H**.

The following plates present the available peat data per proposed turbine locations, including the results of numerical model stability risk assessment.

epared	bv: SK 07	7/02/2023 579-00.sls						l l	Scenario A	Scenario I			Scenario A	Scenario B	7	Scenario A	Scenario B			Scenario A	Seen	ario B
ample /	Sample! Test Point	Association	ITM Easting	ITM Northin g	Thickne ss / Depth of peat	Classification of Thickness / Depth of peat	Slope (Extract ed from GDEM)	Note	FOS _{RAW} Factor of Safety (FoS) for Peat Stability	FOSRAW Factor of Safety (FoS for Peat Stability		Coefficient Fos Adustment Value	FOS _{ADJ} Adjusted Factor of Safety (FoS) for Peat Stability	FOS _{ADJ} Adjusted Factor of Safety (FoS) for Peat Stability	Significant E Feature Ranking Cefficient	RRSF Banking Risk te Potential for Adverse Consequenc es on Sensitive Receptors	RRss Banking Risk re Potential for Adverse Consequenc es on Sensitive Receptors	Distance to Sensitive Receptor	anc e to Sen sitiv e Rec epto r Coef ficie	RR _D Risk Ranking Acounting for Distance to Sensitive Receptors Risk Category	RR ₀ Risk Ranking Acounting for Distance to Sensitive Receptors	Risk Category
										ς, sin α cos α				a + Adjustment Value	µs _F							
		л	-	-	m		Diegrees		FaS v	FAS	7 /		Ens.	FAG.	<i>y</i>	FR.SF /	PRICE Y	m	p	RRIT	RR.D	
	DP001		512342.9		01	B - Very Shallow (0.01-0.5m)	5.76569		31.83	0 2.8		20 0.	0 3183	2.89	100	20 1	20 1	420.3	10	1.0 A - Vers Low Ri	-1	A - Very Low F
th Prob	DP002	TI	512346.9		0.1		5.76569		31.83	0 2.8		20 0	0 3183	0 2.89	10 2	2.0 1	0 2.0 1	419.9	10	10 A - Very Lov Ri		A - Verg Low
h Prob	DP003	T1	512380.9	579012.9	0.2	B - Very Shallow (0.01-0.5m)	2.54332		35,89	0 5.9	8 1.0	2.0 0.	0 35,89	5.98	1.0 2	0 2.0 1	0 2.0 1	414.1	1.0	1.0 A - Very Low Ri	sk 1/	A - Very Low
	DP004	TI	512388.9		0.1		5,89515		31.14	0 2.8		2.0 0.		2.83	1.0 2	0 2.0 1		379.5	1.0	1.0 A - Very Low Ri		A - Very Low
	DP005	T1	512395.9		0.1		10.09382	Rocky outcrop east west steap	18.44	.0 16		2.0 0.		168	1.0 2	0 2.0 1	0 2.0 1	368.4	1.0	1.0 A - Very Low Ri	sk 10	A - Very Low
	DP006	T1	512401.9 512411.9			C - Shallov (0.5-2.0m) C - Shallov (0.5-2.0m)	2,61166	Cut peat. Photo 1150	4.33 11.65	0 1.7		20 0.		0 1.70 0 4.37	1.0 2	2.0 1	0 2.0 1.	240.9 368.6	10	1.0 A - Very Low Ri 1.0 A - Very Low Ri	ek 10	A - Verg Low A - Verg Low
	DP008	T1	512440.9			D - Moderately Deep (2.0-3.5)			1.75	0 11	9 20	20 0		0 1.19	20 2	2.0 1		311.5	10	1.0 A - Very Low Ri	sk 21	B - Low Risk
h Prob		TI	512447.9			C - Shallov (0.5-2.0m)	3,12206		5,85	0 2.9	3 10	20 0		2.93	10 2	2.0 1		343.2	10	1.0 A - Very Low Ri		A - Very Low
th Prob	DP090	T1	512450.0		0.0001	A - Flock (0.0m)	0.07000		207440.24	.0 20.7	4 1.0	2.0		20.74	1.0	0 8,0 1	0 2.0 1.	007.2	1.0	1.0 A - Very Low Fil	sk 1/	A - Very Low
th Prob		T1	512465.9			C - Shallov (0.5-2.0m)		Rocky adjacent	17.29	.0 9.4	3 1.0	20 0.		9.43	1.0	0 2.0 1		348.5	1.0	1.0 A - Very Lov Ri	sk 1/	A - Very Low
	OP014	T1	512513			C - Shallov (0.5-2.0m)	2.52049		6,58	.0 3,4		2.0 0.		3.45	1,0	0 2,0 1	0 2.0 1	345.2	1.0	1.0 A - Very Low Ri		A - Very Low
	DP015	T1	512521.9 512524			A - Bock (0.0m)	6.05489 2.08887		30334.02 87351.72	0 3.0		20 0.	0 30334.02 0 87351.72	3.03 8.73	1.0 2	0 2.0 1 0 2.0 1		0 245.6 0 387.7	1.0	1.0 A - Very Low Ri		A - Very Low
	DP017	71	512528		0.0001	A - Rock (0.0m) A - Rock (0.0m)	4.37171		41863.31	0 41		20 0.		0 4.19	10 2	2.0 1	2.0	287.7	10	1.0 A - Verg Low Ri 1.0 A - Verg Low Ri		A - Very Low I A - Very Low I
	DP018	Ti	512529		0.0001	A - Rock (0.0m)	3,27531		55781.75	0 5.5		20 0	0 55781.75	5.58	10 2	20 1	0 2.0 1	298.7	10	1.0 A - Verg Low Ri		A - Very Low
	DP019	T1	512532	579219					178	0 12	1 20	20 0	0 178	121	2.0 2	2.0 1	0 4.0 2	450.3	10	10 A - Very Low Ri		B - Low Risk
th Prob	DP021	T1	512543	579001		B - Moderately Deep (2.0-3.5) A - Rock (0.0m)		Rock	54424.85	0 5.4	4 1.0	20 0.	0 54424.85	5.44	1.0 2	2.0 1	0 2.0 1	271.7 350.0	10	1.8 A - Very Low Ri	sk 1/	A - Very Low I
th Prob		T1	512544		2.6	D - Moderately Deep (2.0-3.5)	2.00689		3.50	0 2.5	3 1.0	2.0 0.		2.53	1.0	2,0 1		350.0	1.0	1.0 A - Vers Lov Ri		A - Vers Low I
	DP024	T1	512545		2.8	D - Moderately Deep (2.0-3.5)	2.39487		2.72	0 2.0	1 1.0	20 0.		2.01	1.0 2	0 2.0 1		287.8	1.0	1.0 A - Very Low Ri	sk 1/	A - Verg Low I
th Prob	DP025 DP026	T1	512548.9			C - Shallov (0.5-2.0m)		Rocky adjacent photo	6.06 4.90	0 3.6 0 3.5	4 1.0	2.0 0.	0 6.06 0 4.90	3.64 0 3.50	1.0	2.0 1		337.4 396.2	1.0	1.0 A - Very Low Ri	sk U	A - Very Low I
	DP026	T1	512550 512550		2.0	D - Moderately Deep (2.0-3.5) D - Moderately Deep (2.0-3.5)	1.48867 3.35734		9.90 2.47	0 17		20 0.		0 170	1.0 2	2.0 1		396.2	10	1.0 A - Very Low Ri		A - Very Low I A - Very Low I
	DP028	TI	512554		3	D - Moderately Deep (2.0-3.5)			2.54	0 15		20 0		8 1,91	10 2	2.0 1	0 20 1	282.9	10	1.0 A - Very Low Ri		A - Very Low
	DP029	T1	512556.9		2.5			Rocky adjacent photo	3.64	0 2.6	0 10	20 0	0 3.64	2.60	10 2	0 2.0 1	0 2.0 1	334.3	10	10 A - Very Low Ri		A - Very Low
h Prob	DP030	T1	512569		3	D - Moderately Deep (2.0-3.5)	4.10768	2.2.3	1.48	.0 1		2.0 0.		1.11	2.0 2	0 2.0 1		293.5	1.0	1.0 A - Very Low Ri	sk 2.0	B - Low Risk
	DP031	T1	512570			D - Moderately Deep (2.0-3.5)	1,88168		4.62	.0 3.1		20 0.		3.13	1.0 2	0 2.0 1		395.4	1.0	1.0 A - Very Lov Ri		A - Very Low
	DP032	T1	512580		0.1		7.22121		25.52	0 2.3		2.0 0.		2.32	1.0 2	0 2.0 1	0 2.0 1	257.2	1.0	1.0 A - Very Lov Ri	sk ti	A - Very Low
h Prob	DP022 DP034	T1	512593 512591		0.0001	C - Shallow (0.5-2.0m) A - Rock (0.0m)	7.22121	Rocks adjacent	2.72 26750.90	0 12 0 2.6 0 6.0	2 2.0	20 0. 20 0.	0 2.92 0 26750.90	0 122 0 2.67 0 6.01	2,0 2	0 2.0 t	0 4.0 2.	247.7	10	1.0 A - Very Low Ri 1.0 A - Very Low Ri	sk 2.0	B - Low Risk. A - Very Low
Probi	DP036	T1	512594		11	C - Shallow (0.5-2.0m)	144436	riooky aujacent	11.48	61	1 10	20 0		103	10 2	20 1	0 20 1	218.6	10	100 A - Very Low Ri	sk 1	A - Very Low
Prob	DP038	T1	512614	579091	2.5	D - Moderately Deep (2.0-3.5)	4.16378		1.76	0 12	6 2.0	20 0.	0 176	126	2.0 2		0 4.0 2	298.8	1.0	1.0 A - Very Low Ri	sk 2.0	B - Low Risk
Prob	DP041	T1	512635 512645	579052	2	C - Shallow (0.5-2.0m)	3.50355		2.61 37574.96	0 17	4 1.0	20 0. 20 0.	0 2.61 0 37574.96	0 174 0 3.76	1.0 2	0 2.0 1 0 2.0 1		9 298.8 9 254.5 9 230.3	10	1.0 A - Very Low Ri	sk 1.	A - Very Low
Prob	DP043	T1	512645 512651		0.0001	A - Bock (0.0m)	4.87526 5.95167	HOCK	37574.96	0 3.7 0 25		20 0.		3.76	10 2	0 2.0 1		230,3	10	1.0 A - Very Low Ri 1.0 A - Very Low Ri		A - Very Low A - Very Low
h Proh	DP046	T1	512657	579131	1.4		4.51586		2.90	0 16		20 0	0 2.90	0 2.57 0 169	10 2	20 1	0 20 1	210.7 315.5	10	1.0 A - Very Low Ri	sk ti	A - Very Low I
h Probe	DP047	T1	512657	579131	1,1	C - Shallow (0.5-2.0m)	4.51586		3.69	0 19	3 10	20 0.	0 3.69	193	1.0 2	2.0 1	0 2.0 1.	315.5 287.7 0 163.4	1.0	10 A - Veru Lov Bi	sk 1/	A - Very Low
h Probe	DP048	T1	512657.9	579097.9	12	C - Shallow (0.5-2.0m)	4.63283		3,29	18		2.0 0.	0 3.29	180	1.0 2	2.0 1	0 2.0 1.	287.7	10	1.0 A - Very Low Ri	sk 1.0	A - Very Low
h Probi	DP049 TP13		512671 512589		0.0001	A - Rock (0.0m)	8,54413 6,30381	Hook	21656.48 29.15	0 2.1		20 0. 20 0.		0 2.17 0 2.65	1.0 2	9 2,0 1 9 2,0 1	0 2.0 1.	0 163.4 0 182.5	10	1.0 A - Very Low Ri	sk 1,0	A - Very Low F A - Very Low F
Pit.	TP14	TI	512554			D - Moderately Deep (2.0-3.5)	6.30381 2.39487			0 18		20 0	0 246	196	10 2	0 20 1			10	1.0 A - Very Low Ri	St. U.	A - Very Low F
(Pit	TPTS	TT.	512439	PARARA	0.3	B - Very Shallow (UUT-U.bm)	3.12206		2.46 19.50	4.5	0 7.0	20 0.	19.60	4.50	10 2	20 1	U 2.0 1.	294.6 351.6	10	1.0 A - Very Low Hi	sk 1).	A - Vers Low I
Pit	TP16	T1	512293	578980	0.2	B - Veru Shallow (0.01-0.5m)	4,67019	Groundwater logged at base	19.60	07 32	71 10	20 0.	0 19.60	327	1.0 2	2.0 1	0 2.0 1	482.6	1.0	10 A - Very Lov Bi	sk 1	A - Very Low

Plate 1: Peat Data & Risk Assessment Results - T1

		702/2023 579-00.xls							Scenario A	So	enario B			Scenario A	Scenario B		Scenario A	Scenario	В			Scena	rio A	Scen	ario B
ample <i>l</i> est ategory	Sampl e l Test Point ID No.	Association	ITM P	TM forthin		Classification of Thickness / Depth of peat	Slope (Extract ed from GDEM)	Note	FOS _{RAW} Factor of Safety (FoS) for Peat Stability	for Po Stabi	or of ty (FoS) eat	FoS Adjustment Coefficient	nent Value	FOS _{ADJ} Adjusted Factor of Safety (FoS) for Peat Stability	FOSADJ Adjusted Factor of Safety (FoS) for Peat Stability	Significant Feature Ranking Cefficient	RR _{SF} Ranking Risk re Potential for Adverse Consequenc es on Sensitive Receptors	RRSF Banking Risk re Potential fo Adverse Consequen es on Sensitive Receptors	Dis		anc e to Sen sitiv e Rec epto r Coef ficie	RR _D Risk Ranking Acounting for Distance to Sensitive Receptors	Risk Category	RR _D Risk Ranking Acounting for Distance to Sensitive Receptors	Risk Category
									FoS =	ς, yz sin α cos α	ī				+ Adjustment Value	μsF					FUISC				
					100		Degrees		FeG	, Fos	11	"	P	FeS /	Fee	/	ARSF ,	/RP-SF	p 10		<i>pr</i>	RRD		RPD	
Y	17.	,T		Y	-	*	V		4		¥ ¥	- X	Y	*	7	Y .	Y	× .		Y.	100	Ψ.		Ψ.	
pth Probe	DP051 DP052	T2		578676.9 578640.5	0.3	B - Very Shallow (0.01-0.5m) A - Rock (0.0m)	9.62354 8.58034	Rocky adjacent	6,43	1.0	148 1	2.0	0.0	6.43 21567.82	1.48	10 2)	2.0	10	0 1.0	127.5	2.0		B - Lov Risk B - Lov Risk	2.0	B - Low Risk B - Low Risk
th Probe	DP056	T2	512772.9	578616	0.0001	A - Hock (0.0m)	9 15998	Book	21567.82 20245.52	1.07	2.16 1	20	0.0	20245.52	0 2.16 0 2.02	0 2			0 1.0	98.0	2.0	2.0	B - LOV Flisk	2.0	B - Lov Risk
oth Probe	DP057	T2	512776.8	578593	0.2		9.60824		9.67	1.0	1,61 1	2.0	0.0	9.67	1,61	10 2)	2.0	10 2	0 1.0	112.8	2.0	2.0	B - Lov Risk	2.0	B - Low Risk
pth Probe	DP059	T2		578632.9	0.1	B - Very Shallow (0.01-0.5m)		Rocky adjacent	18.04		1.64 1	2.0	0.0	18.04	164	10 2)		10 2	0 1.0	62.8	2.0		B - Lov Risk	2.0	B - Lov Risk
pth Probe	DP061	T2	512811.8 512816	578616 5784918	0.1 0.2	B - Very Shallow (0.01-0.5m)	10.19738 11.45979	Rocky adjacent	18.26 8.17	1.0	166 1	2.0	0.0	18.26 8.17	0 166 0 136	10 21	2.0	10 2	0 1.0	74.2 174.7	2.0		B - Low Risk A - Very Low Risi	2.0	B - Low Risk A - Very Low
	DP063			578667.9	0.2	B - Veru Shallow (0.01-0.5m)		Rocky adjacent	20.69			20	0.0	20.69	0 188	0 2		10 2	0 10	281	4.0	4.0	C - Moderate Ris	4.0	C - Moderat
pth Probe	DP065	T2	512848.8	578655.9	0.1	B - Vere Shallow (0.01-0.5m)	7.50129	Rocky adjacent	24.58	1.8	188 1 2.23 1	2.0	0.0	24.58	2.23	10 2)	2.0	10 2	0 1.0	20.2	4.0	4.0	C - Moderate Ris	4.0	C - Moderat
oth Probe	DP066	T2	512852	578578	0.1		7.07017		26.05	1.9	2.37 1	2.0	0.0	26.05	2.37	10 23	2.0	10 2	8 1.0	83.5	2.0		B - Lov Flisk	2.0	B - Low Flisk
th Probe	DP067 DP068	T2	512896.6 512902.1	578530.5 578511.3		A - Rock (0.0m) B - Vere Shallow (0.01-0.5m)	8,89802 8,89802	Plocky	2082141	1.0	160 1	2.0	0.0	2082141	0 2.08 0 1.60	10 2)	2.0	10 2	0 1.0	92.0 104.3	2.0		B - Lov Fisk B - Lov Fisk	2,0	B - Lov Fisk B - Lov Fisk
th Probe	DP070	T2	512948	578538	0.3 0.5	B - Very Shallow (0.01-0.5m)	11.33164		3.30		1.10 2	20	0.0	3.30	1.10	2)			0 2.0	104.3 60.0	2.0		B - Lov Hisk	2.0	C - Moderat
oth Probe	DP152	T2		578544.3	0.5	B - Very Shallow (0.01-0.5m)	7.6984	INFERRED	4.79		160 1	20	0.0	4.79	0 160	10 2	20	10	0 1.0	113.2	2.0	2.0	B - Lov Risk	2.0	B - Lov Fisk
th Probe	DC150	T2	512007.2	570504	0.5	D - Very Shallow (0.01-0.5m)	0.07025	INFERRED	0.45	1.0	0.15 1 1.87 1	0.3	0.0	9.45 5.62 3.04	0.15	10 2/	0.3	10 8	0 1.0	00.0	2.0	2.0	D - Lov Flisk	2.0	D - Lov Dist
	DP154 DP156		512883.7 512898.3	578588.7	0.5 0.5	B - Very Shallow (0.01-0.5m)		INFERRED INFERRED	5.62 3.04	1.0	1.01 2	2.0	0.0	5.62	1.87	20 20	20	10 2	0 1.0	57.1	2.0		B - Lov Risk C - Moderate Ris	2.0	B - Lov Risk D - High Ris
	DP156		512911.6		0.5			NFERRED	7,23		120 2	0 20	0.0	7.23	120	20 2)			0 2.0	35.0	4.0		C - Moderate Fis		D - High Rist
oth Probe	DP157	T2	512918.4	578630.4	0.5	B - Very Shallow (0.01-0.5m)	13.63092	INFERRED	2.78	1.0	0.93 4.	0 20	0.0	7.23 2.78	0.93	1.0 2.	2.0	10 8	0 4.0	3.2	4.0	4.0	C - Moderate Ris	16.0	D - High Rist D - High Rist D - High Rist
th Probe		T2	512923.9		0.5			INFERRED	3.82		127 2	0 2.0	0.0	3.82	1.27	2.0		10 4	0 2.0	5.9	4.0		C - Moderate Ris		D - High Ris
th Probe	DP159	T2	512935.8 512944.9	5786515 578665.1	0.5 0.5			INFERRED INFERRED	3.82 6.11		127 2 2.04 1	0 2.0	0.0	3.82 6.11	0 127 2	2.0	2.0	10 4	0 2.0	24.0	4.0	4.0	C - Moderate Ris C - Moderate Ris	8.0	D - High Ris C - Moderat
oth Probe	DP161	T2	512955.3	578672.9	0.5	B - Very Shallow (0.01-0.5m)		INFERRED	6.11		2.04 1	20	0.0	6.11	2.04	2	2.0	10 2	0 10	4.5	4.0	4.0	C - Moderate Ris	4.0	C - Moderat
th Probe	DP162		512969.9	578689.4	0.5	B - Very Shallow (0.01-0.5m)	7.25883	INFERRED	5.08		1.69 1	2.0	0.0	5.08	1,69	10 23		10 2	0 1.0	26.4	4.0	4.0	 C - Moderate Ris 	4.0	C - Moderat
th Probe	DP163	T2	512982.8	578704.9 578718.5	0.5 0.5	B - Very Shallow (0.01-0.5m)		INFERRED	4.90 3.05	1.0	163 1	2.0	0.0	4.90 3.05	1.63	10 2)	2.0	10 2	0 1.0	46.6	4.0		C - Moderate Ris		C - Moderat
	DP165	12 T2		578702	0.5	B - Very Shallow (0.01-0.5m)		INFERRED INFERRED	3.05		0.90 4	2.0	0.0	3.05 2.71	0 0.90	20 20		10	0 4.0	36.2	4.0		C - Moderate Ris C - Moderate Ris		D - High Ris D - High Ris
	DP166			578692.3	0.5			INFERRED	2.58		0.86 4	0 20	0.0	2.58	0.30		2.0	10 8	0 40	23.0	4.0		C - Moderate Ris	16.0	D - High Ris
h Probe	DP167	T2	512930.3	578679	0.5	B - Very Shallow (0.81-0.5m)		INFERRED	4.64	1.0	1.55	2.0	0.0	4.64	1.55	10 23	0 2.0	1.0	0 1.0	9.0	4.0	4.0	C - Moderate Ris		C - Moderal
h Probe		T2		578670.6	0.5	B - Very Shallow (0.01-0.5m)		INFERRED	6.11		2.04 1	2.0	0.0	6.11	2.84	10 23		10 2	0 1.0	6.5	4.0		C - Moderate Ris		C - Moderal
	DP169			578659.9	0.5	B - Very Shallow (0.01-0.5m)		INFERRED	6.11		2.04 1	2.0	0.0	6.11	2.04	10 2		10 2	0 1.0	2.3	4.0		C - Moderate Ris		C - Moderal
	DP170			578650.2	0.5			INFERRED	4.75		158 1	2.0	0.0	4.75	158	10 23		10 2	0 1.0	2.8	4.0		C - Moderate Ris		C - Modera
	DP171 TP11	T2 T2	512991.6 512781	578638.9 578602	0.5 0.4		7.79146	INFERRED	4.74 3.77		158 1	2.0	0.0	4.74 3.77	158	2)	2.0	10	1.0	3.1	4.0		C - Moderate Ris B - Lov Risk	4.0	C - Modera C - Modera
	TP12			578632	0.4		9.46395		3.77 6.54	10	1.51 1	2.0	0.0	3.77 6.54	1.51	.0 2)		10	0 2.0	103.1	2.0		B - Lov Hisk C - Moderate Ris	4.0	C - Modera

Plate 2: Peat Data & Risk Assessment Results - T2

		(B - Peat F, Co. Cork		bsoil :	Surve	y Database																	R	SK		
epared b	y: SK 07 ef.: 6036	7/02/2023 679-00.xls							Scenario A		Scenario B			Scenario A	Scenario B			Scenario A	Scenario	В			Scen	ario A	Scen	ario B
ample /	Sampl e l Test Point ID No.	[Association		ITM Northin	Thickne ss / Depth of peat	Classification of Thiokness / Depth of peat	Slope (Extract ed from GDEM)	Note	FoS _{RAW} Factor of Safety (FoS) for Peat Stability	Fac Sal for	S _{RAW} stor of lety (FoS) Peat bility	COEFFICIENT FoS Adjustment	Czefficient FeS Adjustment Value	FOS _{ADJ} Adjusted Factor of Safety (FoS) for Peat Stability	FOSADJ Adjusted Factor of Safety (FoS) for Peat Stability	Sig Fe Ra		RRSF Nenking Risk re Potential for Adverse Consequences on Sensitive Receptors	RRSF Danking Risk re Potential fo Adverse Consequences on Sensitive Receptors	DEFFICIENT	istance to ensitive eceptor	anc e to Sen sitiv e Rec epto r Coef ficie	RR ₀ Risk Ranking Acounting for Distance to Sensitive Receptors	Risk Category		Risk Category
									FoS =	yz sin a co	sa			FoS = C.	+ Adjustment Value	μs	SF					Puist				
					m		Degrees		FoS	n Fos	5	n p	ż	FoS	# FoS	N 20	7	FAR-SF	AR-SF	JE 175	2	#	RR-D		RR-D	
¥	-	T,	~	-	v		-		▼	~	-	~	¥ ¥	-	₹	v	-	₹ 5	v ,		w.		-		-	
pth Probe	DP058	T3	512786.9	579087.9	0.5	9 C - Shallov (0.5-2.0m)	8.27299		2.48	LEOF	118	2.0	2.0 0.	0 248	10 138	2.0	2.0	2.0	1.0	0 2.0	225.7	1.0	1.0	A - Very Low Risk	2.0	B - Low Risk
oth Probe	DP060	T3	512811	579022		C - Shallow (0.5-2.0m)	12 51684		1.50	1.0	0.75	4.0	2.0 0.	0 150 4.38	10 0.75	4.0	2.0	2.0 1	10 8	0 4.0	157.0	1.0	1.0	A - Very Low Risk B - Low Risk		C - Moderate I
pth Probe	DP064	T3	512837	579015	0.4	B - Very Shallow (0.01-0.5m)	10.70068	Deeply erdoed drain	4.38	18	1.06	2.0	2.0 0.	0 4.36	10 125 10 106	2.0	2.0	2.0	10 4	.0 2.0	149.3	2.0	2.0	B - Low Risk	4.0	C · Moderate
	DP069		512940.8	579093.8		C - Shallov (0.5-2.0m)		Cut peat photo	2.23 37553.14	18	3,75	2.0	2.0 0. 2.0 0	0 2.23 0 37553.14	10 106 10 3.75	2.0	2.0	2.0 1	10 4	.0 2.0	254.3 442.5	10	1.0	A - Very Low Risk	. 2.0	B - Low Flisk
pth Probe			512967 512968	579286 579286	0.000	1 A - Rock (0.0m) 6 C - Shallov (0.5-2.0m)		Cut peat Unout peat	37663.W		2.35	10	2.0 0.	0 37563.W	10 2.35		2.0	2.0	100 2	0 1.0	442.8	10	1.0	A - Very Low Risk A - Very Low Risk	100	A - Very Low F A - Very Low F
oth Probe	DP073	13	512968	579238		1 A - Rock (0.0m)		Cut peat	30192.28		3.02	10	2.0 0.		10 3.02	20	2.0	2.0	10 2	0 10	4019	1.0	10	A - Very Low Risk	100	A - Very Low F
th Probe	DP074	79	512981	579239	0.000	6 C - Shallov (0.5-2.0m)	0.00370	Unout peat	5.03	10	189	10		0 5.03	10 189	500	2.0	2.0	10	0 1.0	403.2	10	10	A - Very Low Risk	10	A - Very Low F
	DP075		512996	579176	0	1 B - Veru Shallow (0.01-0.5m)		Cut peat	23.08		2.10		2.0 0.		10 2.10		2.0		10 2	0 10	352.6	10	1.0	A - Very Low Risk	10	A - Very Low
	DP076		512997	579176	1.5	C - Shallow (0.5-2.0m)	8,00388	Uncut peat	1.54		0.92	4.0	2.0 0.		10 0.92	4.0	2.0	2.0		0 4.0	353.1	1.0	1,0	A - Very Low Risk	4.0	C - Moderate
	DP077		513000	579133		B - Very Shallow (0.01-0.5m)	7,86543		23.47		2.13		2.0 0.		1.0		2.0		1.0	0 1.0	317.6	1.0	1,0	A - Very Low Risk	1.0	A - Very Low I
th Probe	DP078	T3.	513000	579134	1.	C - Shallov (0.5-2.0m)	7.86543	Unout peat, inferred.	2.13	1.0	112	2.0	2.0 0.	0 2.13	10 112	2.0	2.0	2.0	1.0 4	.0 2.0	318.5	1.0	1.0	A - Very Low Risk	۸ 2.0	B - Lov Pisk
th Probe	DP079	T3	513001	579084	1.	C - Shallov (0.5-2.0m)	10.71365	Cut peat on till	1.58 4.36	10	0.83	4.0	2.0 0.	0 158	0.83		2.0	2.0	1.0	0 4.0	278.3 313.3	1.0	1.0	A - Very Low Risk	4.0	C - Moderate
kn Probe	DP080 DP091	T0	513026.8 513029	579108.8 579064	0.4	B - Very Shallow (0.01-0.5m) D - Very Shallow (0.01-0.5m)	10,70989	Cut peat photo Top of steep slope	4.36	10	1.45	20	20 0	0 4.36 0 9.69	10 124 10 145	20	2.0	2.0	10 4	0 2.0	313.3	10	1.0	A - Very Low Risk A - Very Low Risk	2.0	B - Low Risk A - Very Low I
oth Probe	DP082	Ť3	5130528			C - Shallow (0.5-2.0m)	11.97277	Lob of steep slobe	1.57		0.78	4.0	20 0	0.57	10 0.78	4.0	2.0	20	107	0 4.0	276.1 310.5	10	10	A - Very Low Risk	40	C - Moderate
oth Probe	DP083	T3	513054	579101	0.5	B - Very Shallow (0.01-0.5m)		Up out of drain	3.14		105	2.0	20 0	3.14	10 105	2.0	2.0	2.0	107 4	0 2.0	321.3	10	10	A - Very Low Risk		B - Low Bisk
th Probe	DP084	T3	513084	579172	1.3	3 C - Shallov (0.5-2.0m)	5.33154	No.	2.65		1.50	10	2.0 0.	0 2.65 0 17.72	10 150	10	2.0	2.0 1	1.0	0 1.0	383.1	1.0	1.0	A - Very Low Risk	k 1.0	A - Very Low I
oth Probe	DP085	T3	513097.8	578888.9	0.	B - Vers Shallow (0.01-0.5m)	10.52563		17.72	10	1.61	10 :	2.0 0.	0 17.72	10 161 10 129	1.0	2.0	2.0	1.0	0 1.0	2015 317.2	1.0	1.0	A - Vers Lov Risk	10	A - Very Low F
	DP086		513098.8			C - Shallov (0.5-2.0m)	7.92501		2.91		1,29	2.0	2.0 0.	0 2.91	10 129	2.0	2.0	2.0		0 2.0		1.0	1.0	A - Very Low Risk	A 20	B · Low Risk
kh Probe	DP087	T3	513098.8 513098.8			8 C - Shallov (0.5-2.0m)	7.92501 9.83355		129		0.83	4.0	2.0 0.	0 129	2.0 0.83	4.0	2.0	4.0 2		0 4.0	317.2 363.1	1.0	2,0	B - Low Risk	4.0	C - Moderate B - Low Bisk
oth Probe	DP088 DP089	T2	513098.8 513134.8			C - Shallov (0.5-2.0m)	9,83355		2.36 1.99	10	1.05	20	2.0 0.	0 2.36 0 1.99	107 1.05	2.0	2.0	2.0		0 2.0	363.1 318.4	1.0	1.0	A - Very Low Risk A - Very Low Risk	2.0	B - Low Risk
wh Prohe	DP091	T3	513149			9 C - Shallov (0.5-2.0m)	7,11033		2.88	10	1.36	10	20 0	0 2.88	10 136		2.0	2.0	10	0 10	310.9	10	10	A - Very Low Risk	2.0	A - Very Low F
oth Probe	DP092	T3	513158.8	579061,9		1 C - Shallov (0.5-2.0m)	6.03585		2.77	10	145	10	20 0	0 2.77	10 145		20	2.0	10 2	0 10	303.1	10	10	A - Very Low Risk	10	A - Very Low F
al Pit	TP07	T3	512950			B - Veru Shallow (0.01-0.5m)	11,36258		8.24	10	1,37	10	2.0 0.	8.24	1.0	10	2.0	2.0	10	0 1.0	169.3	1.0	1.0	A - Very Low Risk	10	A - Very Low F
all Pit	TP08	T3	512974	579057	0.3	2 B - Very Shallow (0.01-0.5m)	9.37515		9.90	10	1.65	10	2.0 0.	0 8.24 0 9.90	1.65	10	2.0	2.0 1	100	0 1.0	240.4		1.0	A - Very Low Risk	k 10	A - Very Low F
ii Pit	TP09	T3	512989	579081	0.3	2 B - Very Shallow (0.01-0.5m)	7.6724		12.02	1.0	2.00	10	2.0 0.	0 12.02	10 2.00	10	2.0	2.0 1	1.0	0 1.0	268.6	10	1.0	A - Very Low Risk	. 10	A - Very Low I

Plate 3: Peat Data & Risk Assessment Results - T3

		B - Peat , Co. Corl		bsoil	Surve	y Database																R	SK		
		702/2023 79-00.xls							Scenario A	Scenario	в		Scenario A	Scenario	в		Scenario A	Scenario	в			Scen	ario A	Scen	ario B
ample / est ategory	Sampl e / Test Point		ITM Easting	Northin	Thickne ss / Depth of	Classification of Thickness / Depth of near	Slope (Extract ed from SDEM) Note		FOS _{RAW} Factor of Safety (FoS) for Peat Stability	FOSRAW Factor of Safety (Fo: for Peat Stability		Fos Adjustment Coefficien:	FOS _{ADJ} Adjusted Factor of Safety (FoS) for Peat Scability	FOSADJ Adjusted Factor of Safety (FoS for Peat Scability	COEFFICIENT	Significant Feature Ranking Cefficient	RR _{SF} Ranking Risk re Potential for Adverse Consequenc es on Sensitive Receptors	RRSF Ranking Risk re Potential for Adverse Consequence es on Sensitive Receptors	DEFFICIENT	Distance to Sensitive Receptor	anc e to Sen sitiv e Rec epto r Coel		Risk Category	RR _D Risk Ranking Acounting for Distance to Sensitive Receptors	Risk Category
ategory	ID NO.	Association	Lasting	9	peat	peac	ODEN) NOTE		FoS =	ς, γε sin α cos α		-0-	$FaS = \frac{\sigma_a}{y_F \sin a \cos a}$	+ Adjustment Valu	e	Use				песерии	PUISI		Category		Category
					m		Degrees		FoS	FoS.	K	μ #	FoS	FoS	μ	ji ji	RR-SF	FIR-SF	11	m	11	RR-D		RR-D	
v	-	J	¥	v		· ·	-	~	-	¥	+ +	v .		¥ .	v v	-	-	v .	· v	~	¥	¥	-	¥	
epth Probe	DD114	TA T	512059 7	579012.9	0.	B - Very Shallow (0.01-0.5m)	11.1727		8.37	107	139 10	20 0	.0 8.37	107 1	39 10	20	2.0	10	1.0	191.6	1 10	-10	A - Vers Low Ris	10	A - Vers Low R
oth Probe	DP115	T4	513678.7	578822.9		C - Shallow (0.5-2.0m)	11.47724		1.63	107 0	182 4.0	2.0 0	0 1.63	10 03	22 4.0	2.0	2.0	10 8	0 4.0	216.8	10	10	A - Vere Lov Ris	4.0	C - Moderate F
oth Probe	DP116	T4	513678.7	578993.9	0.	B - Very Shallow (0.01-0.5m)	6.62442		27.77		52 10	20 0	0 27.77	107 21	52 10	21	2.0	10 2	0 1.0	208.8	10	10	A - Very Lov Ris	10	A - Very Low P
oth Probe	DP117 1	T4	513682.7	578820.9		C - Shallow (0.5-2.0m)	11.47724		1,63	1.0	82 4.0	2.0 0	0 1,63	1.0	32 4.0	2.0	2.0	1.0 8.	0 4.0	219.3	1.0	1.0	A - Very Low Ris	4.0	C - Moderate I
oth Probe	DP118 1	T4	513687	578762	0.0	C - Shallow (0.5-2.9m)	9.36656 INFERRED, TR	ACK SIDE	2.48	1.07	110 2.0	2.0 0	0 2.48	107	10 2.0 26 2.0	2.0	2.0	1.0 4.	0 2.0	202.5 229.0	10	1.0	A - Very Low Ris	2.0	B - Low Risk
pth Probe	DP119 1	T4	513689.7	578879.9	0.5	B - Very Shallow (0.01-0.5m)	9.79765		3.79	1.0	26 2.0	2.0 0	.0 3.79	10 12	26 2.0	2.0	2.0	1.0	.0 2.0	229.0	1.0	1.0	A - Very Low Ris	2.0	B - Low Risk
pth Probe	DP120	T4	513714.7		0.	B - Yery Shallow (0.01-0.5m)	7.80224		23.66	107	215 10	2.0 0	.0 23.66	1.0	15 10	2.0	2.0	10 2	0 2.0	244.7	10	10	A - Very Low Ris	10	A - Very Low F
pth Probe	DP121	T4	513717		0.	B - Ferg Shallow (0.01-0.5m)	11,77141		5.31	101	23 20	2.0 0	.0 5.31	LO ta	23 20	2.0	2.0	10 4.	0.5	254.6	LC	10	A - Very Low Fils		B - Low Risk
pth Probe	DP122	14	513719.6 513728		0.0	1 B - Yery Shallow (0.01-0.5m)	7.80224 11.87142		23.66 31.61	1.07	2.15 1.0	2.0 0	0 23.66		15 1.0 51 1.0	2.0	2.0	1.0	0 1.0 0 1.0	249.5 263.4	11.	1.0	A - Very Low Ris		A - Very Low F
oth Probe	UP123	14	513744				12.26207		7.67		1.51 1.0	20 0	0 7.67			21			0 2.0	263.4 276.6	111	100	A - Very Low Fils	4 11	A - Very Low F B - Low Risk
epth Probe	DE 124	19	513746		0.0	B - Yery Shallow (0.01-0.5m) B - Yery Shallow (0.01-0.5m)	12.26207	- 1	7,67	1.0	28 2.0	2.0 0	0 7.67	10 12	28 2.0	2.0	2.0	10 4.	0 2.0	276.6	1 12	100	A - Very Low Ris A - Very Low Ris	2.0	B - Low Risk
opth Probe	DE126	TA	513755.6			B - Yery Shallow (0.01-0.5m)	12.34511	-	15,23	107	138 10	20 0	.0 15.23	10	38 10	21	2.0	10	0 10	280.3 287.1	1 10	10	A - Very Low Fils	20	A - Vers Low F
pth Probe	DD120	TA	513768	579030		B - Very Shallow (0.01-0.5m)	8.15635	-	11.33	107	189 10	20 0	.0 11.33	100 13	3 10	27	2.0	10	0 10	301.2	1 17	10	A - Very Low Fis	10	A - Very Low F
oth Probe	DP129	Tá	513774			1 B - Very Shallow (0.01-0.5m)	8.15635 Book		22.66	100 2	.06 1.0	2.0 0		10 20		20	2.0	100	6 1.0	309.5	17	10	A - Very Low Fils	10	A - Very Low F
oth Probe	DP130	Tá	513781		0.3		5.08511	- 1	18.02	107 3	.00 1.0	20 0	0 18.02	107 30	10	20	20	10 2	0 1.0	311.7	1 17	10	A - Very Lov Pis	10	A - Very Low F
	DP131 1		513798		0.5	B - Veni Shallov (0.01-0.5m)	7.69429 Drain 0 Weec		4.80	107	60 10	20 0			0 10	21		10 2			1 10		A - Very Low Ris		A - Very Low F
oth Probe	DP132	T4	513814	578971	0.3	B - Very Shallow (0.01-0.5m)	8.9385	-	6.91	107	159 10	20 0	0 6.91	107 15	39 10	20	20	10	0 1.0 0 1.0	327.8 344.0	1 17	10	A - Very Low Ris	10	A - Vers Low F
oth Probe	DP133	T4	513828	578957	0.0	B - Yery Shallow (0.01-0.5m)	6.93989	1	53.06	1.07	159 1.0 158 1.0 142 1.0	2.0 0	0 53.06	10 25	69 10 68 10	2.0	2.0	10 2	0 1.0	358.6	10	10	A - Vers Low Fire	10	A - Versil ov B
oth Probe	DP134	T4	513844	578940		B - Yery Shallow (0.01-0.5m)	10.06662		6.16	107	142 10	2.0 0	.0 6.16	107 13	12 10	20	20	10	0 1.0	375.3	1 10	100	A - Vers Lov Fis	10	A - Vers Low F
all Pit	TP04	T4	513750	578906	0.4	B - Yery Shallow (0.01-0.5m)	12.16074		3.86	1,07	110 2.0	2.0 0	.0 3.86	1.0	10 2.0	2.0	2.0		0 2.0	284.1	10	1.0	A - Very Low Ris	2.0	B - Low Risk
all Pit	TP05 1	TA	513761	579123	0.1	B - Yery Shallov (0.01-0.5m)	5.05258		12,09	107	79 10	0.0	0 12,09	107	79 1.0	0.0	2.0	10 2	0 1.0		1 17	10	A - Very Low Ris		A - Very Low F

Plate 4: Peat Data & Risk Assessment Results - T4

		B - Pea F, Co. Cor		bsoil	Surve	y Database														R	SK		
		7/02/2023 579-00,xls							Scenario A	Scenario B			Scenario A	Scenario B		Scenario A	Scenario B			Scena	rio A	Scen	ario B
ample /	Sampl e / Test Point ID No.	Association		ITM Northin g	Thickne ss / Depth of peat		Slope (Extract ed from GDEM)	Note	FoS _{RAW} Factor of Safety (FoS) for Peat Stability	FOS _{RAW} Factor of Safety (FoS) for Peat Stability	COEFFICIENT FoS Adjustment	Coefficient FoS Adjustment Value	FOSADJ Adjusted Factor of Safety (FoS) for Peat Stability	FOS _{ADJ} Adjusted Factor of Safety (FoS) for Peat Stability	Significant Feature Banking Cefficient	RR _{SF} Ranking Risk re Potential for Adverse Consequeno es on Sensitive Receptors	RR _{SF} Ranking Risk re Potential for Adverse Consequence es on Sensitive Receptors	Distance to Sensitive Receptor	anc e to Sen sitiv e Rec epto r Coef			RR _D Risk Ranking Acounting for Distance to Sensitive Receptors	Risk Category
20 30 4			(0)	400					FoS = ;	c, c sin a cos a			FoS = C.	+ Adjustment Value	µse .		-X-	- 01	Poist		8 898 88 3		8 398 0
					m		Degrees			FoS	<i>μ</i> μ.	- 1	FoS /	FoS		AR-SF	RP-SF	m	#	RR-D		AR-D	
-	-	T.	-	7	7	-	-	-	-	7	T.	v .	7 7		7		· ·	· ·	-	7	-	7	
th Probe I	DP135	T5	T 513982.6	578542	0.6	C - Shallow (0.5-2.0m)	9,03814		3.42	1.28	2.0	2.0 0.	.0 3,42	128	2.0	0 2.0	10 4.0	2.0 490.	1 10	1.0	A - Very Low Risk	2.0	B - Low Risk
			514008.6	578535	0.5	B - Very Shallow (0.01-0.5m)	7.20536		5.11	1.70	1.0	2.0 0.	.0 3.42 1 .0 5.11 1 .0 8.61 1 .0 21.95 1	170	1.0 2.	0 2.0	1.0	1.0 512.	10	1.0	A - Very Low Risk A - Very Low Risk	1.0	A - Very Low
th Probe	DP137	T5	514016.6	578555	0.3		7.132		8.61	1.99	1.0	2.0 0.	.0 8.61	199	1.0 2.	2.0	1.0	1.0 527.	1 10	1.0	A - Very Low Risk	1.0	A - Veru Low i
th Probe	DP139	T5	514094.6		0.1	B - Vers Shallow (0.01-0.5m)	8.42644 5.54985		2196	10 2.00 10 1.50	1.0	2.0 0.	.0 21.95	2.00	1.0 2.	0 2.0	10 20	1.0 601. 1.0 685.	10	1.0	A - Very Low Risk	1.0	A - Very Low
	DPM2 TP01		514182.9 514105	578674.8 578650		C - Shallow (0.5-2.0m) B - Veru Shallow (0.01-0.5m)	5.54985 6.5297		2.76 9.39	1.50		2.0 0.	.0 2.75	0 150 0 2,17	1.0 2.		10 20		1 19	1.0	A - Very Low Risk A - Very Low Risk	1.0	A - Very Low
	TP02		513978	578679		C - Shallow (0.5-2.0m)	6.22902		2.95	10 147		20 0	.0 9.39 .0 2.95 1	0 147	10 2		10 20		1 10	1.0	A - Very Low Risk A - Very Low Risk A - Very Low Risk	100	A - Very Low A - Very Low

Plate 5: Peat Data & Risk Assessment Results - T5

Plate 6: Peat Data - FoS (ADJ) (B) with Slope (GDEM) presents peat stability risk assessment Factor of Safety (FoS (ADJ) (Scenario B)) results, receptors and associated 50m buffer zones, and slope (GDEM).

Plate 6: Peat Data - FoS (ADJ) (B) with Slope (GDEM)

4.5 Peat Stability Risk Assessment Interpretation

Table 13: Peat Stability Risk Assessment – Factor of Safety (Adjusted) (Scenario B) at Main Infrastructure Units presents the interpretation of stability risk assessment data in the context of stability, or factor of safety (FoS) (Adjusted, Scenario B) at each significant development infrastructure unit.

Table 13: Peat Stability Risk Assessment - Factor of Safety (Adjusted) (Scenario B) at Main Infrastructure Units

Trucking No. / Heit	F-0	Coo Harard / Command
Turbine No. / Unit	FoS _{ADJ} (Factor of Safety adjusted according considering site specific conditions)	Geo-Hazard / Comment (Important to consider when carrying out detailed design and preconstruction planning)
T1	Generally acceptable. Data indicates peat stability is primarily acceptable, with the exception of * pockets of moderately deeper peat (marginally acceptable / unstable at localised scale north of proposed turbine locality).	
T2	Generally acceptable with localised areas of marginally stable FoS, localised areas of unstable peat. Data indicates that peat depth in the area is generally shallow with relatively extensive rock outcrops. Steep inclines in the area are a key driver of unfavourable results.	
ТЗ	Data indicates peat stability is primarily acceptable, marginally acceptable. Some locations on approach (access tracks) possess locally unstable data due to relatively higher localized slope angles, and/or deeper peat however peat depths are shallow.	Localised steep inclines and potential for pockets of deep peat. Residual risk = localised stability issues.
Т4	Generally acceptable. Data indicates peat stability is primarily acceptable, with isolated pockets Marginally acceptable.	Localised steep inclines and potential for pockets of deep peat. Residual risk = localised stability issues.
Т5	Generally acceptable. Data indicates peat stability is primarily acceptable, with isolated pockets Marginally acceptable.	Localised steep inclines and potential for pockets of deep peat. Residual risk = localised stability issues.

Turbine No. / Unit	FoS _{ADJ} (Factor of Safety adjusted according considering site specific conditions)	Geo-Hazard / Comment (Important to consider when carrying out detailed design and preconstruction planning)
Met Mast	Generally acceptable. Data indicates peat stability is primarily acceptable, with isolated pockets Marginally acceptable.	
Borrow Pit	Generally acceptable. Data indicates peat stability is primarily acceptable, with isolated pockets Marginally acceptable.	
Substation	Data indicates peat stability is acceptable. Very Low Risk in terms of Receptors	Potential for localised stability issues.

The following table presents the interpretation of stability risk assessment data in the context of stability, or factor of safety (FoS) in context of receptor type (RR (SF)) and distance to receptor (RR(D)) at each significant development infrastructure unit.

Table 14: Peat Stability Risk Assessment – Factor of Safety (Adjusted) (Scenario B) at Main Infrastructure Units

Turbine No. / Unit	RR(D) (Ranked Risk considering Distance to Sensitive Receptors)	Geo-Hazard / Comment (Important to consider when carrying out detailed design and preconstruction planning)
T1	Very Low to Low Risk	Localised stability and drainage network.
T2	Low to High Risk	Localised stability and proximity to sensitive receptor (river). Minor, localised stability issues have the potential to have significant adverse impacts on receptors.
ТЗ	Very Low to Moderate Risk	Localised stability and drainage network.
T4	Very Low to Moderate Risk	Localised stability and drainage network. Limited data between downstream receptors. Potential for deep pockets of peat but peat depth generally shallow. Max (GDEM) incline = approx. 8 degrees, moderate incline.
Т5	Very Low to Low Risk	Localised stability and drainage network.
Met Mast	Very Low to Moderate Risk	Localised stability and drainage network.

Turbine No. / Unit	RR(D) (Ranked Risk considering Distance to Sensitive Receptors)	Geo-Hazard / Comment (Important to consider when carrying out detailed design and preconstruction planning)
Borrow Pit	Very Low to Moderate Risk	Localised stability and drainage network.
Substation	Very Low to Low Risk	Localised stability and drainage network.

4.6 Subsoil Stability Risk Assessment Results

Review of subsoil stability assessment result data and maps as presented in **Appendix I** indicate that the factor of safety is generally acceptable and very low to low stability risk across the site (areas assessed / trial pit locations*) with the exception of minor isolated areas of steeper inclines and deeper till deposits (inferred*).

Summary of risk at the site under varying conditions and scenarios is presented in the following tables.

Table 15: Factor of Safety (Adjusted) at Trial Pit Locations

	Acceptable	Marginally Stable	Unstable
FoS (Adj.) Scenario A	16	0	0
FoS (Adj.) Scenario B	14	2	0

Table 16: Risk Ranking (Distance) at Trial Pit Locations

	Very Low	Low	Moderate	High
RR (Dist.) Scenario A	14	1	1	0
RR (Dist.) Scenario B	13	1	2	0

Based on the inferred conservative values applied to the above stability risk assessment, the factor of safety is highly dependent on cohesive strength, which in turn is highly dependent on hydrogeological characteristics including pore water pressure. **Figure 2** presents potential varying Factors of Safety for subsoils at the Site depending on varying cohesive strength and depths to failure plane.

Figure 2: Correlation Between Factor of Safety, Cohesive Strength and Depth of Subsoils

Observations made during site walkovers include deep deposits of till in the northwestern area of the site immediately north of T1. Iron pan was also observed in trial pits in those areas. The area is also extensively modified in terms of constructed drainage for agricultural and forestry purposes.

Areas with potentially deep till deposits, steep incline (c. >15 degrees), potential for iron pan, and enhanced opportunity for recharge to groundwater are considered to have elevated Moderate to High risk in terms of subsoil soil stability.

Areas of elevated stability risk, even at a localised scale, are considered geo-hazards requiring mitigation. Geo-hazards are presented in **Appendix H**.

4.7 Subsoil Stability Risk Assessment Interpretation

The following table presents the interpretation of stability risk assessment data in the context of stability, or factor of safety (FoS) (Adjusted, Scenario B) at each significant development infrastructure unit.

Table 17: Subsoil Stability Risk Assessment – Risk Ranking (Distance) (Scenario B) at Main Infrastructure Units

<u>Omis</u>	onits		
Turbine No. / Unit	RR _D (Ranked Risk considering Distance to Sensitive Receptors)	Geo-Hazard / Comment	
T1	Low	Localised stability and drainage network.	
T2	Low to Moderate	Localised stability and proximity to sensitive receptor (river). Minor, localised stability issues have the potential to have significant adverse impacts on receptors.	
Т3	Low	Localised stability and drainage network.	
T4	Low	Localised stability and drainage network.	
T5	Low	Localised stability and drainage network.	

Turbine No. / Unit	RR _D (Ranked Risk considering Distance to Sensitive Receptors)	Geo-Hazard / Comment
Met Mast	Low	Localised stability and drainage network.
Borrow Pit	Low	Localised stability and drainage network.
Substation	Low	Localised stability and drainage network.

5. Conclusions

Peat Stability

Peat depth across the site is generally very shallow to shallow with the exception of isolated pockets of moderately deep peat delineated by shallow subsoils and/or bedrock at or near the surface, particularly in the NW of the site. There was no very deep peat observed at the site. There is a relatively extensive area of deep peat north of the proposed location for T1 and the associated access track. The footprint of the Project avoids this area.

The Factor of Safety (Adjusted) (Scenario B i.e., 1m surcharge) at peat probe locations is generally Acceptable throughout the Site with occasional Marginal locations and some Unacceptable localities associated with relatively steeper slopes coupled with relative peat depths.

Marginally Stable Locations, presented in yellow in **Plate 7** above, are concentrated around Site Access tracks and do not overlap with any hardstand areas with the exception of proposed location of T3. Unstable/Unacceptable locations, denoted in red in **Plate 7**, are seen adjacent to the Site Access Tacks to the proposed substation location and T1 as well as the proposed hardstand location of T3.

The Risk Ranking (Distance) Scenario B i.e., 1m surcharge) at peat probe locations is generally Very Low to Low with the exception of Moderate to High-risk point locations, outlined in **Plates 1 - 5** above, mainly associated with close proximity to sensitive receptors (e.g., mapped EPA rivers and artificial draining with direct linkage to rivers). The location of these 'Moderate Risk' to 'High Risk' vary throughout the Site. All proposed turbine hardstand areas are located outside of these elevated risk areas, with the exception of three No. points at T3, Site drainage maps highlight the connection of forestry drains to the Sullane_010.

In summary, through the process of mitigation by design, the Development avoids areas where significant peat or slope stability risk is highest. There remains a residual risk of displacement at a localised scale, which is inherent with all construction / excavation activities particularly when dealing with peat. This is of particular importance to consider when working in close proximity to sensitive receptors, for example; working near, over in surface water features, or when designing drainage networks and the positioning of outfalls.

Subsoil Stability

Subsoils underlying the site are characterized generally as clayey sandy GRAVEL or TILL.

The Factor of Safety (Adjusted) (Scenario B i.e., 1m surcharge) at trial pit locations is generally Acceptable with no exception of marginally stable / unstable point locations.

The Risk Ranking (Distance) Scenario B i.e., 1m surcharge) at trial pit locations is generally Very Low to Low with no exceptions of Moderate or High-risk point locations.

Rock Strength

Bedrock is slightly unweathered.

Bedrock strength at the Site is reported as Weak.

Reuse There is a risk that if used for track surfacing, the trafficked material will gradually degrade, potentially leading to chronic siltation of drainage features or dust depending on meteorological conditions. Therefore, bedrock material arising at the Site will be reused as fill material, Site Access Roads and Turbine Hardstands will be surfaced with a harder rock imported to the Site.

Geo-Hazards

A register of Geo-Hazards is mapped and presented in **Appendix H**.

6. Caveats & Recommendations

The risk of landslides occurring on the proposed site under worst case scenario conditions (Conservative values and Scenario B (+1m)) has been determined to be generally **very low to low** however, the following points should be noted;

- The low risk classification is largely driven by shallow peat depths at sampling points associated with proposed infrastructure locations, and by the undulating nature of the substrate topology, however the potential for deeper areas of peat associated with the Project footprint suggests that soil stability at a highly localized scale may give rise to some difficulty e.g. collapse of side walls in excavations, and subsidence over time under newly installed floating hardstands (on peat), etc. Such potential issues give rise to the need for vigilance during and after the construction phase of the Project and it is recommended that all works are supervised and monitored by a competent person (Geotechnical Engineer) through out the construction phase, and that the site is monitored at a reasonable frequency during the operational phase of the proposed development. The frequency of monitoring during the operational phase will be conducted at a high frequency (e.g. weekly) during the initial months, and will reduce (e.g. monthly) gradually over the following year minimum, or until site conditions are observed to be stable.
- The main infrastructure components such as the turbine hardstand areas avoid very sensitive areas of the site. However, a portion of the proposed access track associated with the proposed watercourse crossings are within 50m of a sensitive receptor (Sullane_010). Peat depths at these locations are shallow however some moderately steep (>8 degrees) to steep (>14 degrees) inclines result in some localised unstable peat data (0.5m peat depth inferred). Unstable peat data in the context of proximity to the dowstream receptor (RR(D)) results in a High Risk classification.
- Through EIA, constraint identification and design process, the Project footprint avoids areas of significant unacceptable risk, however this will include all aspects of the Project including; vehicle movements, personell movements, temporary storage, etc. In other words, the Project(including construction activities) will be limited to the Project footprint, and will avoid areas of elevated risk. Managament of excavation arisings or any bulk material or equipment will consider proximity to these areas or geo-constraints, and developer's or sub-contractors method statement and risk assessments will incorporate this into operational and health and safety mitigation measures.

7. References

Scottish Government (2017) Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments

N. Boylan, P. Jennings & M. Long (2008) Peat slope failure in Ireland. Quarterly Journal of Engineering Geology and Hydrogeology. Available at https://www.researchgate.net/publication/245379146 Peat slope failure in Ireland Accessed: 20/08/19.

R. Munro (2004) Dealing with bearing capacity problems on low volume roads constructed on peat. Roadex, Northern Periphery.

GSI Map Viewer. Available at:

http://dcenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a30af518e87a4c0ab2fbde2aaac3c228 Accessed: 20/08/19.

EPA Map Viewer. Available at: https://gis.epa.ie/EPAMaps/ Accessed: 20/08/19.

EANI River Basin Viewer. Available at https://appsd.daera-ni.gov.uk/RiverBasinViewer/. Accessed; 20/08/19.

D. L. Fitzgerald (2007) Estimation of point rainfall frequencies. Irish Meteorological Service Technical Note 61

R. A. Lindsay (2005) Wind Farms and Blanket Peat - The Bog Slide of 16th October 2003 at Derrybrien, Co. Galway, Ireland. University of East London and The Derrybrien Development Cooperative Ltd.

Farrell, E.R., Long, M., Gavin, K. Henry, T.; (2006) 'Chapter 4: Geotechnics of Landslides' In: Creighton, R (eds). Landslides in Ireland. Dublin: Geological Survey of Ireland., pp.23-31

Met Eireann (MET) (2018) 2018, A summer of Heat Waves and Droughts

Met Eireann (MET) (2018) Available Data. Available: https://www.met.ie Accessed: 06/08/19

Boylan, N. and Long, M. (2012) Evaluation of peat strength for stability assessments. Geotechnical Engineering Volume 167 Issue GE5, Institution of Civil Engineers (ICE)

Agus F., Hairiah K., Mulyani A. (2011) *Practical Guidelines – Measuring Carbon Stock in Peat Soils*. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Indonesian Centre for Agricultural Land Resources Research and Development.

Kiley G., Leahy P., McVeigh P., Lewis C., Sottocornola M., Laine A. and Koehler A. (2012) PeatGHG – Survey of GHG Emission and Sink - Potential of Blanket Peatlands. EPA Report No. 228, Environmental Protection Agency (EPA), Ireland.

Renou-Wilson F. and Wilson D. (2014) *Vulnerability Assessment of Peatlands: Exploration of Impacts and Adaptation Options in Relation to Climate Change and Extreme Events (VAPOR)*. EPA Report No. 250, Environmental Protection Agency (EPA), Ireland.

Wilson, S; Bray, R; Cooper, P (CIRIA, 2004) Sustainable Drainage Systems – Hydraulic, structural and water quality advice. CIRIA C609, London, UK.

Geotech Data (ND) Cohesion [Online] Available at: http://www.geotechdata.info/parameter/cohesion Accessed: July 2021

British Standard (BSI) (2010) Code of Practice for Site Investigations (BS 5390:1999 + A2:2010, ISBN 978 0 580 64609 6)

Appendix A

I Appendix B - Peat schamore WF, Co. Co	t & Subsoil Survey Da rk	atabase		Peat 8	& Slope Stab	lity Risk	Asses	sment												ZSK		
pared by: SK 07/02/2023 C File Ref.: 603679-00 xls					Parameter Values	Scen	nario A	Scenario B	Scenario A	Scenario B		[Scenario A	Scenario B	1	Scenario A	Scenario B			Scenario A	Sce	enario B
Sample / Test / Total Digory No. Association	ITM ITM Objets of Easting Northing peat	Classification of Thickness / fr	lope Litracted om DEM) Note	Slope Angle		Bulk Unit reight of heat Dep Cansorvativa Falls	ith to II ire plane II Peat Depth II	Surcharge Equivalent Placed Fill Depth i.g. +1m	FOS RAW Factor of Safety (FoS) for Peat Stability	FOS RAW Factor of Safety (FoS) for Peat Stability	COEFFICIENT Coefficient	Fos Adjustment Volue	FOS ADJ Adjusted Factor of Safety (FoS) for Peat Stabi l ity	FOS ADJ Adjusted Factor of Safety (FoS) for Peat Stability	Significant Feature Rankin	RRSF Ranking Risk re Potential for Adverse Consequences on Sensitive Receptors	RRSF Ranking Risk re Potential for Adverse Consequences on Sansitive Receptors	Distance to Sensitive Receptor	RRD Risk Ranki Acounting ce to Sensit ive Receptors Receptor Coeffi cient	ng for Risk Category	RR _D Risk Ranking Acounting for Distance to Sensitive Receptors	Risk Categ
			errees	a	a c' Racians RPa	, z	,		FeS = y	C, r sina rosa			$FaS = \frac{r_a}{y_S vis v cove}$	+ Adjustment Value	µ _{sr}	RESE	µ RR-SF µ		Poist, RR-D		Inn o	
						JWW JW	P	w	P03	res	, ,		res p	rus	μ	nn-ar	nn-ar	m	D AMED		MAC)	
Probe DP001 T1 Probe DP002 T1 Probe DP003 T1	512343,945 578929,888 0 512346,945 578942,885 0 512380,986 578912,87 0	1 B - Very Shallow (0.01-0.5m) 1 B - Very Shallow (0.01-0.5m) 2 B - Very Shallow (0.01-0.5m)	5.76509 5.76509 1.54132	5,76569 5,76569 2,54332	0,10063 3,5 0,10063 3,5 0,044389 3,5 0,10289 3,5	11	0.10 0.10	1,10 1,10	31,83 31,83 97,80	1.0 2.8 1.0 2.8	10 2	0 0.0	31.83 31.83 35.83	1.0 2.89 1.0 2.89		10 2.0 10 2.0	1.0 2.0	1.0 4: 1.0 4:	0.3 1.0 9.9 1.0	1.0 A - Very Low Risk		A - Very Low A - Very Low
Probe DP004 T1	512388.935 578941.885 0 512395.934 578925.888 0	1 B - Very Shallow (0.01-0.5m) 1 B - Very Shallow (0.01-0.5m)	5.89515 10.09382 Rocky outcrop east west steap inclin	5.89515 10.09382 6.0615	0.10289 3.5 0.17817 3.5	11	0.10	1.10	31.14 18.44	1.0 2.8 1.0 1.6	1.0 2	0 0.0	31.14 18.44	1.0 2.63 1.0 1.68	0	0 2.0	1.0 2.0	1.0 3:	9.5 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk		0 A - Very Low
Probe DP006 T1 Probe DP007 T1	512401.932 578848.905 0. 512411.931 578971.829 0.	7 C - Shallow (0.5-2.0m) 6 C - Shallow (0.5-2.0m)	6.0615 Cut peat. Photo 11.50 2.61166	6.0615 2.61166 4.97205	0.105793 3.5 0.045582 3.5	11	0,70 0,60	1,70	4,33 11,65	1.0 1.77 1.0 4.3	1,0 2	0 0,0	4,33 11,65	10 1.78 10 4.37	.0	0 2.0	1.0 2.0	1.0 3r 1.0 3r	8,9 1,0 8,6 1,0	1.0 A - Very Low Risk 1.0 A - Very Low Risk		U A - Very Low
Probe DP008 T1 Probe DP009 T1	512440.923 578785.918 2 512447.923 578887.875 512458.921 579048.862 0.000	1 D - Moderately Deep (2,0-3,5m) 1 C - Shallow (0,5-2,0m)	4.97205 3.12206		0.096779 3.5 0.05449 3.5	11 11	2,10 1,00	3.10 2.00	1,75 5,85	1.0 1.11 1.0 2.90	2.0 2. 1.0 2.	0.0	1,75 5,85	1.0 1.19 2	.0	.0 2.0 .0 2.0	1.0 4.0	2.0 3 1.0 34	1.5 1.0 3.2 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk	2,	0 B - Low Risk 0 A - Very Low 0 A - Very Low
Probe DP010 T1 Probe DP011 T1	512465,919 579026,866 1.	1. A - Rock (0.0m) 2. C - Shallow (0.5-2.0m)	0.87893 Rock 0.87893 Rocky adiacont	0,87893	0.01534 3.5 0.01534 3.5	11	0.00 1.20	1,00	207449,24 17,29	1.0 20.7 1.0 9.4	1.0 2.	0.0	207449.24 17.29	1.0 20.74 1.0 9.43	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 31 1.0 34	7.2 1.0 8.5 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk		
Probe DP012 SITE Probe DP013 SITE	512466.462 578343.336 0. 512508.746 578204.739 0.	2 B = Very Shallow (0.01-0.5m) 4 B = Very Shallow (0.01-0.5m)	6.63083 8.10763	6,63083 8,10263	0.141418 3.5	11	0.20	1,20	17,29 13,87 5,70	1.0 2.3 1.0 1.6	1,0 2,	0.0	13,87 5,70	1.0 2.31 1.0 1.03	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 50 1.0 5	7.7 1.0 8.8 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk	1	.0 A - Very Low .0 A - Very Low .0 A - Very Low .0 A - Very Low
h Probe DP014 T1 h Probe DP015 T1	512508.746 578204.739 0. 512513 579076 1 512521.906 578733.929 0.000	1 C - Shallow (0.5-2.0m) L A - Rock (0.0m)	2.52049 6.05489 Book	2,52049 6,05489	0.043991 3.5 0.105678 3.5	11	1,10 0.00	2,10 1,00	6,58 30334,02	1.0 3.4 1.0 3.0	1.0 2.	0.0	6,58 30334,02 87351,72	3,45 1,0 3,03	i i	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 34	5.6 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk	1	0 A - Very Low
Probe DP016 T1 Probe DP017 T1 Probe DP018 T1	512524 579140 0.000 512528 579008 0.000	C. A - Rock (C.Orr.) C. A - Rock (C.Orr.)	2.08887 Rock 4.37171 Rock 3.27531 Rock	4,37171	0.036458 3.5 0.076301 3.5	11	0.00	1.00	87351.72 41863.31 55781.75	1.0 8.7: 1.0 4.11	10 2	0.0	87351,72 1 41963,31 1 55781,75 1	8.73 1.0 4.19	3	.0 2.0 .0 2.0	1.0 2.0	1.0 3	727 1.0	1.0 A - Very Low Risk		.0 A - Very Low .0 A - Very Low .0 A - Very Low .0 B - Low Risk .0 B - Low Risk
Probe DP019 T1 Probe DP020 SITE	512529 579026 0.000 512582 579219 2 512542,156 578444,87 0	A - Rock (0.0m) 1 D - Moderately Deep (2:0-3.5m)	5.27531 Rock 4.90234 30.08572	4.37171 3.27531 4.90234 10.08572	0.085682 3.5 0.126030	11	2.10	3.10	1.78	1.0 1.2	20 2	0.0	1.78	9.58		10 2.0	1.0 4.0	2.0 4	0.3 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk	2	0 B - Low Risk
Probe DP021 T1 Probe DP022 SITE	512543 579001 0.000 512543 579001 0.000	(LA - Rock (0.0m)	3.35734 Rock 3.67259 Rocky adjacent	3.35/34	0.058597 3.5	11	0.00	1.00	54424.85 348	1.0 5.4	10 2	0 6.0	54424.85	1.0 5.44		10 2.0	1.0 2.0	1.0 2: 1.0 2:	1.7 1.0	1.0 A - Very Low Risk	1	O A - Very Los
Probe DP023 T1 Probe DP024 T1	512544 579108 2 512545 579027 2	6 D - Moderately Deep (2,0-3,5m) 8 D - Moderately Deep (2,0-3,5m)	3.97259 HOOKY BESIDENT 2.00689 2.39187	2,00689 2,39487 2,00689	0.035027 3.5 0.041798 15	11	2,60 2,60	3,60 3,60	3,50 3,50 2,72	10 25 10 20	10 2	0 00	3,50 2,73	10 2,07 10 2,53		0 2.0	1.0 2.0	1.0 3	0.0 1.0	1 0 A - Very Low Risk		0 A - Very Lov
Probe DP025 T1	512548.902 579095.851 1 512550 579167 2	S C - Shallow (0.5-2.0m) S D - Moderately Deep (2.0-3.5m)	2,00689 Rocky adjacent photo 1,48967			11	1,50	2,50	6,06 4.90	1.0 3.6 1.0 3.5	10 2	0 0.0	6.05	1.0 3.64	.0	0 20	1.0 2.0	1.0 3:	7.4 1.0	1.0 A - Very Low Risk		0 A - Very Lov
Probe DP027 T1 Probe DP028 T1	512550 579019 2 512554 579029	2 D - Moderately Deep (2.0-3.5m) 3 D - Moderately Deep (2.0-3.5m)	3.35734 2.39487 2.00689 Rocky adjacent pitoto			11	2.20	3,20 4,00	2,47 2,54	1.0 1.7 1.0 1.8	1.0 2.	0.0	2,47 2,54	1.0 1.70 1.0 1.91	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 2	9.6 1.0 2.9 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk		A - Very Lov
Probe DP029 T1 Probe DP030 T1	512569 579056	D - Moderately Deep (2.0-3.5m) D - Moderately Deep (2.0-3.5m)	4,10768	2,39487 2,00689 4,10768	0,035027 3,5 0,071693 3,5	11	2.50 3.00	3,50 4,00	3,64 1,48	1.0 2.6 1.0 1.1	2.0 2.	0 0.0 0 0.0 0 0.0	3,64 1	1.0 2.50 1 1.0 1.11	.0 2	.0 2.0 .0 2.0	1.0 2.0 1.0 4.0	1.0 33 2.0 21	4.3 1.0 0.5 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk	2	
Probe DP031 T1 Probe DP032 T1	512570 579177 2 512580 579018 0	D = Moderately Deep (2.0-3.5m) B = Very Shallow (0.01-0.5m) C = Shallow (0.5-2.0m)	1.88168 7.22121	7.22121	0.032842 3.5	11	2.10 0.10	3,10 1,10	4,62 25,52	1.0 3.17 1.0 2.3	1.0 2.	0.0	4.62 1 25.52 1	1.0 3.13 1 1.0 2.32	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 31 1.0 21	G.4 1.0 7.2 1.0	1.0 A = Very Low Risk 1.0 A = Very Low Risk	1	0 B - Low Risk 0 A - Very Low 0 A - Very Low 0 B - Low Risk
Probe DP033 T1 Probe DP034 T1	512580 579018 0 512583 579002 1 512591 578975 0.000	1 C - Shallow (0.5-2.0m) L A - Rock (0.0m)	7.22121 7.22121 6.38067 Booky adjacent	7,22121 6,88087 5,14745	0.126034 3.5 0.120094 3.5	11	1.10	2.10 1.00	2,32 26750,90	1.0 1.2 1.0 2.6	2.0 2. 1.0 2.	0.0	2,32 26750,90	1,0 1,22 1 1,0 2,67	.0	.0 2.0 .0 2.0	1.0 4.0	2.0 2- 1.0 2	3.3 1.0 8.6 1.0	5. A. Very 1 con No. 1. A. Very 1 con No. 2. A. Ver	2.	
Probe DP035 SITE Probe DP036 T1	512591.89 578663.944 1. 512594 5791.34 1.	C Shallow (0.5.2.0m)	5.14745 Hocky attacent 1.44436	1,944.30	0.025209 3.5	11	1,20	2,20 2,10	11,48	1.0 1.6. 1.0 6.0	1,0 2,	0.0	2,97	1.02 1.0 6.01	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 2 1.0 3	8.8 1.0 8.2 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk		0 A - Very Lov 0 A - Very Lov
Probe DP037 SITE Probe DP038 T1	512610.753 578641.295 0.000 512614 579091 2. 512622.547 578532.831 0.	A - Rock (0.0m) S D - Moderately Deep (2,0-3,5m) S C - Shallow (0.5-2,0m)	7,67632 4,16378	7 87632 4 16378	0.133977 3.5 0.072672 3.5	11	0.00 2.50	1,00 3,50	24035.57 1.78	1.0 2.4 1.0 1.3	20 2	0 00	24035,57 1,76 1,76	1.0 2.40 1.0 1.26		0 2.0	1.0 2.0	2.0 21	3.9 1.0 6.8 1.0	1.0 A - Very Low Risk	-	0 B - Low Risk
h Probe DP039 SITE h Probe DP040 SITE h Probe DP041 T1	512622.547 578532.831 0 512622.988 578538.051 0 512635 579052	8 C - Smallow (0.5-2.0m) 2 B - Very Shallow (0.01-0.5m)	4.16378 8.54745 9.23341 3.50055	7,87632 4,16378 8,54745 9,23341 3,50355 9,20616	0.160153 3.5 0.001140 5.5	11	0.20	1.90	10.05	1.0 1.2 1.0 1.6	10 2	0.0	2.71 10.05	1.20 1		.0 2.0 .0 2.0	1.0 2.0	1.0 21	0.2 1.0 3.9 1.0	1.0 A - Very Low Risk	1	A - Very Lov 0 A - Very Lov 0 A - Very Lov 0 B - Low Risk 10 B - Low Risk 0 B - Low Risk 0 A - Very Lov 0 A - Very Lov
th Probe DP042 SITE	512636.019 578210.109 0	B - Very Shallow (0.01-0.5m) A - Rock (0.0m)	9.20516	9,20516	0.16056 3.5 0.005090 3.5	11	0.10	1.10	20.15	1.0 1.8	10 2	0 0.0	20.15	1.0 1.83		0 2.0	1.0 2.0	1.0 4	9.8 1.0	1.0 A - Very Low Risk		O A - Very Lov
th Probe DP043 T1 th Probe DP044 T1 th Probe DP045 SITE	512655 579030 0.000 512651 579011 0 512655.487 579646.68 0.000 512657 579131 1	2 B - Very Shallow (0,01-0,5m) L A - Rock (0,0m)	5.95167 7.72005 Rock	5,95167 7,72005	0.085089 3.5 0.103876 3.5 0.13474 3.5 0.078817 3.5	11	0.20	1,20	37574.96 15.43 23902.71	1.0 2.5	1.0 2	0.0	37574,98 15,43 23902,71	1.0 2.57		0 2.0	1.0 2.0	1.0 2	0.7 1.0	1.0 A - Very Low Risk		0 A - Very Lov
th Probe DP045 SITE th Probe DP046 T1 th Probe DP047 T1	512657 579131 1 512657 579131 1	4 C - Shallow (0.5-2.0m) C - Shallow (0.5-2.0m)	4,51586 4,51586	4.51586 4.51586 4.83283	0.078817 3.5 0.078817 3.5	11	1,40	2,40	2.90 3.69	1.0 1.6 1.0 1.9	1.0 2.	0 0.0	2,90 1 3,89	1.0 1.69	0	0 2.0	1.0 2.0	1.0 3	5.5 1.0 5.5 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk		0 A - Very Low
th Probe DP048 T1 th Probe DP049 T1	512657,878 579097,85 1. 512671 578968 0.000	2 C - Shallow (0.5-2.0m) L A - Rock (0.0m)	4.63283 8.54413 Rock			11	1.20	2.20 1.00	3.29 21656.48	1.0 1.8 1.0 2.1	1.0 2	0.0	3.29 1 21656.48	1.0 1.80	2	10 2.0	1.0 2.0	1.0 21	7.7 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk	1	.0 A - Very Low .0 A - Very Low
th Probe DP050 SITE th Probe DP051 T2	512685 579093 512680.860 579676.941 0	1 C = Shallow (0.5-2.0m) 3 B = Very Shallow (0.01-0.5m)	6.01069 9.62354 Rocky adjacent	8.54413 6.01069 9.62354 8.58034 6.02249 8.59635	0.104906 3.5 0.167962 3.5	11	1.00 0.30	2.00 1.30	3,06 6,43	1.0 1.5 1.0 1.4	1.0 2.	0.0	3.06 6.43	1.0 1.53 1.0 1.48		.0 2.0 .0 2.0	1.0 2.0	1.0 21	7.5 2.0	2.0 B - Low Risk	2	A - Very Low B - Low Risk B - Low Risk B - Low Risk B - Very Low
th Probe DP052 T2 th Probe DP053 SITE	512707.055 578640.467 0.000 512722 579066 0.5 512730 578854 0.	L A - Rock (0.0m) 5 C - Shallow (0.5-2.0m)	8.58084 6.03249 8.59535	8,58034 6,02249	0.149755 3.5 0.105112 3.5	11	0.00	1.00	21567,82 3,21	1.0 2.10 1.0 1.5	1,0 2.	0 0.0	21567.82 3.21	1.0 2.16 1 1.0 1.56 1	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 1.	3.1 2.0 5.5 1.0	2.0 B = Low Risk 1.0 A = Very Low Risk	2.	.0 B = Low Risk .0 A = Very Low
h Probe DP056 SITE h Probe DP056 T2		1 B - Very Snallow (0.01-0.5m) 1 C - Shallow (0.5-2.0m)	8.595.55 10.02816 9.15998 Rock	10,02816	0.175024 3.5 0.159872 3.5	11	1,10	2.10	21.53 1.69 20245.52	1.0 0.8	4.0 2	0.0	1.89	1.0 0.88 4	ii i	.0 2.0	1.0 8.0	4.0 1	0.6 1.0	1.0 A - Very Low Risk	4	0 C - Moderate 0 C - Moderate 0 B - Low Risk 0 B - Low Risk
h Probe DP057 T2 h Probe DP058 T3	512776.85 578615.963 0.000 512776.85 57892.968 0 512786.851 579087.851 0	2 B - Very Shallow (0.01-0.5m)	9,60824	0.95934	0.10701E 1 E	- 11	0.20	1.20		1.0 1.6	10 2	0 0.0	1,69 20245,52 9,67	10 131		.0 2.0 .0 2.0	1.0 2.0	1.0	28 20	2.0 B - Low Risk	2	.0 B - Low Risk
h Probe DP059 T2 h Probe DP060 T3	512806.844 578632.949 0. 512811 579022	1 B - Very Shallow (0.01-0.5m) 1 C - Shallow (0.5-2.0m)	8.27299 10.32984 Rocky adjacent 12.53684	8.27299 10.32984 12.51684	0.18029 3.5 0.21846 3.5	11	0.10	1,10	2.48 18.04 1.50	1.0 1.6	1.0 2 4.0 2	0.0	18.04	1.64 1.0 0.75 4		.0 2.0 .0 2.0	1.0 20	1.0	7.0 1.0	2.0 B - Low Risk	2.	.0 B - Low Risk .0 B - Low Risk .0 B - Low Risk .0 C - Moderate
h Probe DP061 T2 h Probe DP062 T2	512811.848 578615.953 0. 512815.991 578891.962 0.	1 B = Very Shallow (0.01=0.5m) 2 B = Very Shallow (0.01=0.5m)	10.29758 Rocky adjacent 11.45979	10.19738 11.45979 8.95796 10.70018 7.50129	0.177978 3.5 0.200011 3.5	11	0.10	1,10	18.26 8.17	1.0 1.6 1.0 1.3		0.0	18.26 8.17	1.0 1.86 1.0 1.36		.0 2.0 .0 2.0	1.0 2.0	1.0	4.2 2.0 4.7 1.0	2.0 B = Low Risk 1.0 A = Very Low Risk	2	0 B = Low Risk 0 A = Very Low
th Probe DP063 T2 th Probe DP064 T3	512819.841 578967.942 0. 512837 579015 0.	1 B - Very Shallow (0,01-0,5m) 4 B - Very Shallow (0,01-0,5m)	9 95706 Backy Milwood	8,95796 10,70018	0.156346 3.5 0.186762 3.5	11	0.10 0.40	1,10	20,69 4,38	10 12	20 2	0 0.0 0 0.0 0 0.0	20,69 1 4,36	1.0 1.88 1.0 1.25	.0	.0 2.0 .0 2.0	1.0 2.0	1.0 2.0 14	9.1 4.0 9.3 2.0	2.0 B – Low Risk 1.0 A – Very Low Risk 4.0 C – Moderate Risk 2.0 B – Low Risk	4	.0 B = Low Risk .0 A = Very Low .0 C = Moderate .0 C = Moderate
h Probe DP065 T2 h Probe DP068 T2	512848.835 578655.944 0. 512852 578528 0.	1 B - Very Shallow (0.01-0.5m) 1 B - Very Shallow (0.01-0.5m)	10.70068 Deeply entoed drain 7.50129 Rocky adjacent 7.07017	7 50129 7 07017	0.130922 3.5 0.123398 3.5	11	0.10 0.10	1.10 1.10	24,58 28,05	1.0 2.2 1.0 2.3	1.0 2	0 0.0	24.58 26.05	1.0 2,23 1.0 2,37	.0	0 2.0	1.0 2.0 1.0 2.0	1.0	0.2 4.0	4.0 C - Moderate Risk 2.0 B - Low Risk	4	0 C - Moderate 0 B - Low Risk
h Probe DP067 T2 h Probe DP068 T2	512896.554 578590.495 0.000 512900.145 578511.339 0.	A - Rock (0.0m) B - Very Shallow (0.01-0.5m)	8.99802 Rocky 8.89802 9.24406 Cut peut photo	7.07017 8.89902 8.89902 9.24406	0.1553 3.5 0.1553 3.5	11	0.00	1.00	20821.41 6.94	1.0 2.0 1.0 1.6	10 2	0.0	20821.41 6.94	1.0 2.06 1.0 1.60		.0 2.0 .0 2.0	1.0 2.0	1.0 1	2.0 2.0 4.3 2.0	4.0 C - Moderate No. 20 B - Low Pisk. 2.0 B - Low Pisk. 2.0 B - Low Pisk. 3.1 A - Very Low Pisk. 3.1 A - Very Low Pisk. 3.1 A - Very Low Pisk. 3.2 A - Very Low Pisk. 3.3 A - Very Low Pisk. 3.4 A - Very Low Pisk. 3.5 A - Very Low Pisk. 3.5 A - Very Low Pisk. 3.6 A - Very Low Pisk. 3.7 A - Very Low Pisk. 3.8 A - Very Low Pisk.	2	C - Moderate D B - Low Risk C B - Low Risk D C - Moderate D A - Very Low
h Probe DP070 T2 h Probe DP070 T2 h Probe DP071 T3	512940,817 579091,849 0 512948 578538 0 512967 579286 0,000	9 C - Shallow (0.5-2.0m) 5 B - Very Shallow (0.01-0.5m) 11 A - Rock (0.0m) 6 C - Shallow (0.5-2.0m)	9.34406 Cut peat photo 11.33164 4.87812 Cut peat	9.24406 11.33164 4.87812 4.87812	0.197774 3.5 0.095110	11	0.900	1.90	2.23 3.30	1.0 1.1	20 2	0.0	2,23 3,30	1.06 3		.0 2.0 .0 2.0	1.0 4.0	2.0 2	0.0 2.0	2.0 B - Low Risk	4	O C - Moderate
h Probe DP072 T3	512968 579236 0.	6 G - Shallow (0.5-2.0m) 4 A - Rock (0.0m)	4.87812 Uncut peat	4,87812 6,08378	0.085139 3.5 0.195181 3.5	11	0.60	1,60	57553,14 6,26 30192,28	1.0 2.3 1.0 1.0	1.0 2.	0 0.0	37593,14 6,26 30192,28	1.0 2.35		0 2.0	1.0 2.0	1.0 44 1.0 44	2.8 1.0	1.0 A - Very Low Risk		
h Probe DP073 T3 h Probe DP074 T3 h Probe DP075 T3	512981 579239 0. 512996 579176 0. 512997 579176 1.	6 C - Shallow (0.5-2.0m) B - Very Shallow (0.01-0.5m)	6.08375 Uncut peat 8.00388 Cut peat	6,08375 6,08375 8,06388 8,06388 7,86543	0.108181 3.5 0.139894 3.5	11	0,60	1,60	5,03 23,08	1,0 1,8 1,0 2,1	10 2	0 0.0	5,03 23.08	1.0 1.89 1.0 2.10	.0	.0 2.0 .0 2.0	1,0 2,0	1.0 40	0.2 1.0	1.0 A - Very Low Risk		0 A - Very Low 0 A - Very Low 0 A - Very Low 0 C - Moderate
h Probe DP078 T3 h Probe DP077 T3		5 C - Shallow (0.5-2.0m) 1 B - Very Shallow (0.01-0.5m)	8.00988 Uncut pest 7.86543	8.00388 7.86543	0.139694 3.5 0.137278 3.5	11	1.50	2.50 1.10	1.54 23.47	1.0 0.90 1.0 2.11	4.0 2 1.0 2	0 0.0	1.54 1 23.47	D 0.92 4	.0	10 2.0	1.0 8.0	4.0 3: 1.0 3:	3.1 1.0 7.6 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk	4	0 A - Very Lov
h Probe DP078 T3 h Probe DP079 T3 h Probe DP080 T3	513000 579134 1	1 C = Shallow (0.5-2.0m) 1 C = Shallow (0.5-2.0m)		7,86543 7,86543 10,71365 10,70689 10,73867 11,97277	0.137278 3.5 0.186988 3.5	11	1.10 1.10	2.10 2.10	2.13 1.58	1.0	2.0 2. 4.0 2.	0.0	2.13 1.58	1.12 1 1.0 0.83 4	E .	.0 2.0	1.0 4.0 1.0 8.0	2.0 3 4.0 2	8.5 1.0 8.3 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk	2 4	C - Michellan A - Very Low B - Low Risk C - Moderate B - Low Risk A - Very Low C - Moderate B - Low Risk B - Low Risk B - Low Risk B - Low Risk
Probe DP081 T3	519036.799 579103.846 0. 513028 579064 0. 513052.798 579088.85	B = Very Shallow (0,01=0,5m) B = Very Shallow (0,01=0,5m)	10.73865 Cut peut on till 10.70989 Cut peut photo 10.73887 Top of steep slope	10,70989	0.186923 3.5 0.187425 3.5	11	0.40	1,40	4,35 8,69	1.0 1.2 1.0 1.4	2.0 2. 1.0 2. 4.0 2.	0.0	4,35 8,69	1.0 1.24 1 1.0 1.45 1 1.0 0.78 4		.0 2.0 .0 2.0	1.0 4.0	2.0 3 1.0 2	3.3 1.0 6.1 1.0	1.0 A - Very Low Risk	2.	0 A - Very Lov
Probe DP082 T3 Probe DP083 T3 Probe DP084 T3	513052.798 579088.85 513054 579101 0. 513084 579172 1.	5 B - Very Shallow (0.01-0.5m)	11.97277 11.97277 Up out of drain 5.33154	11,97277 11,97277 5,33154	0.208984 3.5 0.208984 3.5	11	0,50	2.00 1.50	3,14	1.0	2.0 2.	0 9.9	1,57 3,14 2,65	1.0 0.78 4 1.0 1.05 2 1.0 1.50	.0	0 2.0	1.0 8.0 1.0 4.0	4.0 3 2.0 3; 1.0 3	1.3 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk 1.0 A - Very Low Risk	- 4	0 B - Low Risk 0 B - Very Lov
Probe DP085 T3	519097.782 578888.893 0	1 B - Very Shallow (0.01-0.5m)	10.52563			11	0.10	1.10	240 17.72 2,91	1.0 1.5 1.0 1.6 1.0 1.2	2.0 2.	0 0.0	17.72 2 01	1.0 1.01		10 2.0 10 5.0	1.0 20	1.0 21	1.5 1.0 7.2 1.0	1.0 A - Very Low Risk		0 A - Very Lov
Probe DP087 T3 Probe DP088 T3	513098.783 579039.856 1. 513098.784 579131.84 0.	8 C - Shallow (0.5-2.0m) 8 C - Shallow (0.5-2.0m)	7.92501 9.88855	7,92501 7,92501 7,92501 9,83355 8,46323 7,88494	0.138318 3.5 0.171628 3.5	11	1.90	2.90 1.90	1,29 2,38	2.0 0.8 1.0 1.0	4.0 2.	0 0.0 0 0.0 0 0.0	1.29 2 2.38	2.0 0.83 4 1.0 1.05	10	10 4.0	2.0 8.0	4.0 3 2.0 3	7.2 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk 2.0 B - Low Risk 1.0 A - Very Low Risk 1.0 A - Very Low Risk 2.0 B - Low Risk 2.0 B - Low Risk	4.	0 C - Moderati
Probe DP089 T3 Probe DP080 SITE	513134.775 579024.863 1. 513144.309 578641.933 0.	1 C = Shallow (0.5-2.0m) 2 B = Very Shallow (0.01-0.5m)	8.46323 7.68494 INFERRED, RECENT PLANTING WORK	8,46323 7,68494	0.147711 3.5 0.134128 3.5	11	1.10	2.10	1,99 12,00	1.0 1.0 1.0 2.0	2.0 2.	0.0	2.38 1.99 12.00	1.0 1.04	0	.0 2.0 .0 2.0	1.0 4.0	2.0 3	8.4 1.0 1.5 2.0	1.0 A - Very Low Risk 2.0 B - Low Risk	2	.0 B - Low Risk 0 C - Moderate .0 B - Low Risk .0 B - Low Risk .0 B - Low Risk
h Probe DP091 T3 h Probe DP092 T3	513149 579188 0. 513158 17 570061 800 4	9 C = Shallow (0,5-2,0m) 1 C = Shallow (0,5-2,0m)	7.12083	6,03585	0.124099 3.5 0.105345 3.5	11 11	0.90 1,10	1,90 2,10	2,88 2,77	1.0 1.3 1.0 1.4	1,0 2	0.0	2.88 1 2.77 1	1.0 1.36 1.0 1.45	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 3: 1.0 3:	3.2 1.0 0.1 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk	1	O A - Very Low O A - Very Low O A - Very Low
th Probe DP063 SITE th Probe DP094 SITE th Probe DP095 SITE	513176.936 578890.824 0. 513192.295 578506.057 0.	2 B - Very Shallow (0.01-0.5m) 2 B - Very Shallow (0.01-0.5m)	7.32049 INFERRED, RECENT PLANTING 5.82346 INFERRED, VISIBLE	7.32049 5.82346 3.90552	0.127767 3.5 0.101839 3.5	11	0.20 0.20	1.20	12.59 15.78	1.0 2.1 1.0 2.6	10 2	0.0	12.59 15.76	10 2:10 10 2:03	.0	0 2.0 0 2.0	1.0 2.0 1.0 2.0	1.0 11	5.2 1.0 5.8 2.0	1.0 A - Very Low Risk 2.0 B - Low Risk	2	0 A - Very Low 0 B - Low Risk 0 A - Very Low
	513232.887 578535.496 0. 513280.697 578583.899 0.3	2 B = Very Shallow (0.01–0.5m) 5 B = Very Shallow (0.01–0.5m)	3.90552 INFERRED, VISIBLE 7.82911			11	0.20 0.15	1.20	23.41 15.62	1.0 3.9 1.0 2.0	1.0 2. 1.0 2.	0 0.0	23.41 15.62	1.0 3.90 1.0 2.04	.0	0 2.0 0 2.0	1.0 2.0	1.0 11 1.0 11	2.4 1.0 6.5 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk		O A - Very Low
Probe DP097 STE Probe DP098 STE Probe DP099 STE	513325.091 578628.638 0 513338.509 578641.916 0	1 B - Very Shallow (0.01-0.5m) 2 B - Very Shallow (0.01-0.5m)	4.13463 4.13463 INFERRED, VISIBLE	4.13463 4.13463	0.072163 3.5 0.072163 3.5	11	0.10	1.10 1.20	44.25 22.12	1.0 4.0. 1.0 3.6	1.0 2.	0.0	44.25 22.12	1.0 4.02 1.0 3.69	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 1:	2.0 1.0 2.4 2.0	1.0 A - Very Low Risk 2.0 B - Low Risk	2	.0 A - Very Low
Probe DP100 SITE	513418.002 579383.96 0. 513451.965 579382.508	5 B = Very Shallow (0.01=0.6m) 1 C = Shallow (0.5-2.0m)	2.83559 2.6214	2,83559 2,6214 6,82921	0.04949 3.5 0.045752 3.5	11	1.00	1,50 2,00	12.88 6.96	1.0 4.2 1.0 3.4	1.0 2.	0.0	12.88 6.95	4.29 1.0 3.48		.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 21	4.7 1.0 0.2 1.0	2.0 B - Low Risk 1.0 A - Very Low Risk		0 A - Very Low
h Probe DP101 SITE h Probe DP102 SITE h Probe DP103 SITE	513463.004 579286.371 0. 513467.931 579348.545 0.	8 U - Shallow (0,5-2,0m) 3 B - Very Shallow (0,01-0,5m)	6.82921 3.24569 4.8460 (NEFERRED, VISINA)	5,82921 3,24549	0.119192 3.5 0.056848 3.5 0.084835 3.5	11	0,80 0,30 0.40	1,80 1,30	3,37 18,78	1.0 1.0 4.3	1.0 2.	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	3,37 18,76	1.0 1.50 1.0 4.33	.0	.0 2.0 .0 2.0	1.0 2.0	1.0 11	0.8 1.0 8.2 1.0	1.0 A - Very Low Risk 1.0 A - Very Low Risk		.0 B - Low Risk .0 A - Very Low .0 A - Very Low .0 A - Very Low .0 A - Very Low .0 G - Moderate
Probe DP103 SITE	513481.275 578648.72 0. 513492.107 578645.718 0.	4 p - very Shallow (0.01-0.5m)	4.8492 INFERRED, VISIBLE 4.87908 INFERRED, DRAIN 3.20987	4,8492 4,87908 3,20987	U.U04635 3.5	- 131	0.40	1,40	9,44 12,52	2.71	2.	0.0	9,44	2,70		2.0	1.0 2.0	1.0[3.04 4.0	4.0 C - Moderate Risi 4.0 C - Moderate Risi	4.	0 C - Moderate 0 C - Moderate

13/04/2023 6098F9 NMF Pear & TP Database (07.02 (version 1)

Page 1 of 2

Part	Appendix B - Peat & Subsoil hamore WF, Co. Cork	Survey Database		Peat & SI	ope Stabil	ity Ris	k Asses	sment	-										R	SK		
Part	ared by: SK 07/02/2023 Dis Part - 603679-00 vie			200			trenario A	Scenario B	Scanario A	Scanario B		Scenario A	Scanario B	1	Scanario A	Scanario B			Scan	urio A	Scan	urio B
10 10 10 10 10 10 10 10	Sample / Test Jole / Test Point ID ITM ITM	Depth of Classification of Thi	(Extracted ckness / from	Stope Angle Stope	Undrained Br Shear w Streaments	eight of let	alture plane	Equivment Placed Fill	FOS _{RAW} Factor of Safety (FoS) for Peat Stability	FOS RAW Factor of Safety (FoS) for Peat Stability	Fos Adjustment Coefficient	FOS _{ADJ} Adjusted Factor of Safety (FoS)	FoSADI	Feature Rankin	RR _{SF} Ranking Risk re Potential for Adverse Consequences on Sensitive	RR _{SF} Ranking Risk re Potential for Adverse Consequences on Sensitive		Distance to Sensitive Receptor Coefficient	Risk Ranking Acounting for Distance to Sensitive	Risk Category	RR _D Risk Ranking Acounting for Distance to Sensitive	Risk Categor
Column C		m.	Domes	a a	c' y	z Nm2 m		z	FaS =	C _c inacosa		FoS = In	+ Adjustment Value	Per	80.00	pore		Point,	po n		Ipp n	
Column C		m		Liegiles Racians	162-0 EX	ems m	•	lw.	POS p	HOS /	y z	Pas u	Pas p	μ	MHASE	p MM-SIF	, m	μ	HK-D		HHAD	
The column The	Probe DP106 SITE 513493.543 578 Probe DP107 SITE 513494	95.827 0.5 B - Very Shallow (0.01- 79382 1 C - Shallow (0.5-2.0m)	3.26679	5,53476 0.06 3,28679 0.0670	66 3.5 16 3.5	11	0.30 1.00	1.3	11.05 1 5.59 1	2.55 1.0 2.80 1.0	2.0	.0 11.05 .0 5.59	.0 2.55 1 .0 2.80 1	0	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 2 1.0 281	2.5 4.0 1.5 1.0	4.0 1.0	C - Moderate Risk A - Very Low Risk	4,0	C = Moderate R A = Very Low F
The column The	Probe DP108 SITE 513507 Probe DP109 SITE 513540	78652 0.2 B - Very Shallow (0.01-	0,5m) 5.2313	6.0625 0.1056 5.2313 0.0913	03 3.5	11	0.20 0.20	1,2	15.17	2.53 1.0 2.92 1.0	2.0	.0 15.17 .0 17.52	0 2.53 1 0 2.92 1	.0 2	10 2.0 10 2.0	1.0 2.0 1.0 2.0	1.0 11	1.5 4.0 2.3 4.0	4.0 4.0	C - Modecate Risk	4.0	C - Moderate F C - Moderate F
The color of the	Probe DP111 SITE 513571	78990 0.1 B - Very Shallow (0.01-	0,5m) 7,4715	7,4715 0,1304	02 3,5	11	0.10	1,41	9.57	2,73 1,0 0 2,24 1,0	2.0	.0 9,57 .0 24,68	0 2,78 1	0	0 2.0	1.0 2.0	1.0 65 1.0 73	5.4 2.0 3.2 2.0	2,0	B - Low Risk	2.0	B - Low Risk
The color of the	Probe DP113 SITE 513537,983 576	12.245 0.5 B - Very Shallow (0.01-	0.5m) 3.91545	3.93545 0.0683	37 3.5	11	0.10	1.11	22.68 1	2.08 1.0 3.11 1.0	2.0	.0 22.68 .0 9.34	D 2.06 1	0	10 2.0 10 2.0	1.0 2.0 1.0 2.0	1.0 91 1.0 147	1.2 2.0 7.5 2.0	2.0	B - Low Risk B - Low Risk	2.0	B - Low Risk
The color of the	Probe DP114 T4 513650.662 570 Probe DP115 T4 513678.657 578	12.893 0.2 B - Very Shallow (0.01- 22.904 1 C - Shallow (0.5-2.0m)	0.5m) 11.1727 11.47724	11 47724 0 2003	16 3.5	11	0.20 1.00	1.2	9.37	1.39 1.0 0.82 4.0	2.0	.0 8.37 .0 1.63	0 1.39 1 0 0.82 4	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 8.0	1.0 191 4.0 216	1.6 1.0	1.0	A - Very Low Risk A - Very Low Risk	1.0	A - Very Low I C - Moderate
The color of the	Probe DP116 T4 513678.658 578 Probe DP117 T4 513682.656 578	20.904 1 C = Shallow (0.5-2.0m)	11.47724	5,52442 0,1156 11,47724 0,2000	16 3.5	11	0,100	1,11	27,77	0 2,52 1,0 0 0,82 4,0	2.0	.0 27,77	0 2.52 1 0 0.82 4	.0	.0 2.0 .0 2.0	1.0 2.0 1.0 8.0	1.0 208 4.0 219	9.8 1.0 9.3 1.0	1,0 1,0	A - Very Low Risk A - Very Low Risk	1.0	A - Very Low C - Moderate
Property Property		51.999 0.8 C - Shallow (0.5-2.0m) P9.891 0.5 B - Very Shallow (0.01-	0,5m) 9,79765	9.79765 0.1710	01 3.5	11	0.80	1.9	2,48 1	1,10 2,0 1,26 2,0	2.0	0 2.48	0 1.10 2	0	.0 2.0 .0 2.0	1.0 4.0	2.0 202	2.5 1.0			2.0	B - Low Risk B - Low Risk
1	Probe DP120 T4 513734.65 578	99.872 0.1 B - Very Shallow (0.01- 79056 0.3 B - Very Shallow (0.01-	0.5m) 11.77141	11.77141 0.356	76 76	-11	0,10	1.19	23.68 1	2,15 1,0 1,23 2,0	2.0	.0 23,66 .0 5,31	0 2.15 1 0 1.23 2	0	.0 2.0 .0 2.0	1.0 2.0	1.0 244 2.0 254	17 1.0	1.0	A - Very Low Risk A - Very Low Risk	1.0	A - Very Low B - Low Risk
Part	obe DP122 T4 513739.649 57	978.97 0.1 B - Very Shallow (0.01- 79044 0.05 B - Very Shallow (0.01-	7,80224	7,80234 0,1361	75 3.5 86 3.5	11	0.10 0.05	1.10	23,66 1	2.15 1.0 1.51 1.0	2.0	.0 23.68	0 2.15 1 0 1.51		.0 2.0 .0 2.0	1.0 2.0	1.0 249	35 10			1.0	A - Very Low
Part	be DP124 T4 513744	79023 0.2 B - Very Shallow (0.01-	0.5m) 12.26207		13 3.5	11	0.20	1.2	7,67	1,28 2,0	2.0		0 1.28 2		2.0	1.0 4.0	2.0 276	1.0	1.0	A - Very Low Risk	2.0	B - Low Risk
Part	be DP126 T4 513755.641 578	95.879 0.1 B - Very Shallow (0.01-	0.5m) 12.34511	12.34511 0.2154	63 3.5	11	0,10	1.11	15.23	1,36 1,0	2.0	.0 15,23	0 1.38 1	Ö	10 2.0	1.0 2.0	1.0 287	1.0	1.0	A - Very Low Risk	1.0	A - Very Lov
The color of the	be DP128 T4 513756	79030 0.2 B - Very Shallow (0,01-	0,5m) 8,15685	8,15635 0,1423	55 3,5	- 11	0.20	1,3	11.33	1.89 1.0	2.0	0 11,33	0 1,89 1		0 2.0	1.0 2.0	1.0 301	1.2 1.0	1.0	A - Very Low Risk	1.0	A - Very Lov
2 15 1	be OP130 T4 513781	79006 0.2 B - Very Shallow (0.01-	0.5m) 5.08511	5.08511 0.0883	52 3.5	- 11	0.20	1.2	18.02	3.00 1.0	2.0	.0 22,69		0 0	0 2.0	1.0 20	1.0 311	1.7 1.0	1.0	A - Very Low Risk	1.0	A Very Low
2 15 1	be DP132 T4 513016	78996 0.5 B - Very Shallow (0.01- 78971 0.5 B - Very Shallow (0.01-	0.5m) 8.9385	8,6385 0,1560		11	0.30	1.5	0.91 1	1.50 1.0		.0 4.80	J 1.50 1		.0 2.0 .0 2.0	120 220	1.0 327	(2) 1.0	1.0	A - Very Low Risk	1.0	A - Mercy Low
2	be DP133 T4 513828 be DP134 T4 513844	78940 0.5 B - Very Shallow (0.01-	0.5m) 10.06662	10,05662 0,1756	24 3.5 96 3.5	11	0.05	1.0	53,06	2.53 1.0 1.42 1.0	2.0	0 53.06	D 2.53 1	9	.0 2.0 .0 2.0	1.0 2.0	1.0 358 1.0 375	3.6 1.0 5.3 1.0	1.0	A - Very Low Risk A - Very Low Risk	1.0	A - Very Lov A - Very Lov
Part	the DP136 T5 S14008 584 578	34.954 0.5 B - Very Shallow (0.01-	0.5m) 7.20536	7.20536 0.1253	57 3.5	11	0.60	1.6	3,42 1	1,28 2,0 1,70 1,0	2.0	.0 3.42	D 1.28 2	0 2	.0 2.0 .0 2.0	1.0 4.0	2.0 490 1.0 512	1.7 1.0 2.5 1.0	1.0	A - Very Low Risk A - Very Low Risk	2.0	A - Very Low
1	be DP137 T5 514016.583 57 be DP139 T5 514094.566 578	01.954 0.1 B - Very Shallow (0.01-	0,5m) 8.42644	8 42644 0 1470	79 3.5 69 3.5	11	0,30	1,3	8,61 1 21,95 1	1,99 1,0 2,00 1,0	2.0	.0 8,61 .0 21,95	0 1,99 1	0	.0 2.0 .0 2.0	1.0 2.0	1.0 527 1.0 601	7.1 1.0	1,0	A - Very Low Risk A - Very Low Risk	1,0	
Property Property	be DP142 T5 514182,903 578 be DP150 SITE 521558		0.0001 Fac	5.54985 0.0988 0.0001 1.755	63 3.5 06 3.5	11	1.20	2.2	2.75	1.50 1.0 39631.47 1.0	2.0	.0 2.75	0 1.50 0 30631.47	.0	10 2.0	1.0 2.0	1.0 685	1.0 1.0	1.0	A - Very Low Risk B - Low Risk	1.0	A - Very Low B - Low Risk
Part			0.5m) 8.57213 INFERRED T 50004 INFERRED	8.57213 0.1496	12 3.5	11	0.50	1.5		1.44 1.0	2.0	.0 4.32	0 1.44 1		2.0	1.0 2.0	1.0 143	1.9 2.0			2.0	B = Low Risk
Part	be DP153 T2 512857.185 578 be DP154 T2 512883.333 578		0.5m) 8.87005 INFERRED 0.5m) 6.5471 INFERRED	6.5471 0.1143	49 3.5 58 3.5	11	0.50	1,5	9,45	3.15 1.0	2.0	0 9.45	D 3.15 1	9	2.0	1.0 2.0	1.0 86	1.8 2.0	2.0	B = Low Risk B = Low Risk	2.0	B - Low Risk
Part	100 DP155 T2 512898.277 578	25.496 0.5 B - Very Shallow (0.01-	0,5m) 12.38686 INFERRED	12,38986 0,2160	44 3.5	11	0.50	1.5	3,04	1.01 2.0	2.0	0 3.04	0 1,01 2	.0	0 2.0	1.0 4.0	2.0 35	5.0 4.0 1.4 4.0	4.0	C - Moderate Risk	8.0	D - High Risk
	bbe DP157 T2 512918.357 578	93,435 0.5 B - Very Shallow (0.01-	0,5m) 13,63092 INFERRED	13,83092 0,2375	04 3.5	11	0.50	1,50	2,78 1	0.93 4.0	2.0	0 2,78	0 0.93 4	.0	0 2.0	1.0 8.0	4.0 3	32 4.0	4.0	C - Moderate Risk	16.0	D High füst
	bbs DP150 T2 512935.847 578	51.487 0.5 B - Very Shallow (0.01-	0.5m) 9.73503 INFERRED			11		1.5	3.82	1.27 20		.0 3.82	D 127 2	i i	10 2.0	1.0 4.0	2.0 24	(d) 4.0	4.0	C - Moderate Risk	8.0	D - High Risk
No. Prince Prin	be DP161 T2 512955.279 576	72.892 0.5 B - Very Shallow (0.01-	0.5m) 6.01271 INFERRED	6.01271 0.1046	42 3.5	11	0.50	1.5	8.11	2.04 1.0		.0 6.11	D 2.04		10 2.0	1.0 2.0	1.0 4	15 4.0	4.0	C Moriorate Risk	4.0	C - Moderate
	be DP163 T2 512969.853 578	34.926 0.5 B - Very Shallow (0.01-	0.5m) 7.52427 INFERRED	7.52427 0.1313	23 3.5	11	0.50	1.5	4.90	1,63 1,0		.0 5.08	D 1,63	1 1	.0 2.0	1.0 2.0	1.0 26	5.4 4.0 5.6 4.0	4.0	C - Moriecate Risk	4.0	
	bb DP164 T2 512880.788 578 bb DP165 T2 512900.544 578	22.011 0.5 B - Very Shallow (0.01-	0.5m) 14.02991 INFERRED			11	0.50	1.5	3,05	1,02 2,0 0,90 4,0	2.0	.0 3.05 .0 2.71	D 0.90 4	.0	.0 2.0 .0 2.0	1.0 4.0	2.0 36 4.0 23	3.2 4.0 3.8 4.0	4.0	C - Moderate Risk C - Moderate Risk	8.0 16.0	D High Risk D High Risk
	be DP166 T2 512913.823 578 be DP167 T2 512930.341 578	29.016 0.5 B - Very Shallow (0.01-	0,5m) 7.95622 INFERRED	7.95622 0.1380	62 3.5	11	0.50	1,5	2,58	0.85 4.0 1.55 1.0	20	.0 2,58	0 0,86 4 0 1,55 1	.0	.0 2.0 .0 2.0	1.0 8.0	4.0 15 1.0 8	5.8 4.0 9.0 4.0	4.0	C - Moderate Risk C - Moderate Risk	16.0	D - High Risk C - Moderate
Pro 1	be DP169 T2 512956.898 578	0.5 B - Very Shallow (0.01- 59.907 0.5 B - Very Shallow (0.01-	0.5m) 6.01271 INFERRED 0.5m) 6.01271 INFERRED	6,01271 0,1049	42 3.5	11	0,50	1,5	6,11	2,04 1,0 2,04 1,0	2.0	.0 6,11	0 2.04 1 0 2.04 1	0 3	.0 2.0 .0 2.0	1.0 2.0 1.0 2.0	1.0 6	3.5 4.0 2.3 4.0	4.0	C - Moderate Risk	4.0	
Pro 1	be DP170 T2 512974.711 578	90.191 0.5 B - Very Shallow (0.01-		7.77752 0.1357 7.79146 0.1356	43 3.5 87 3.5	11	0.50	1,5	4.75	0 1,58 1,0 0 1,58 1,0	2.0	.0 4,75	0 1,58 1 0 1,58 1	.0 3	10 2.0 10 2.0	1.0 2.0 1.0 2.0	1.0 2	2.8 4.0 3.1 4.0	4.0	C - Moderate Risk	4.0	C = Moderate C = Moderate
POD 1 19 1 19 1 19 1 19 1 19 1 19 1 19 1		78690 0.5 B - Very Shallow (0.01-	0.5m) 6.5297	6.5297 0.1130	65 3.5 17 3.5	11	0.30	1.3	9.39	2.17 1.0 1,47 1.0	2.0	.0 9.39 .0 2.85	0 2.17 1	0	.0 2.0 .0 2.0	1.0 2.0	1.0 607 1.0 480	7.3 1.0	1.0	A - Very Low Risk A - Very Low Risk	1.0	A - Very Low A - Very Low
POD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TP03 T5 513964	78729 0.8 C - Shallow (0.5-2.0m)	5.65128	5,85128 0,0986 12,18074 0,2120	33 3,5	- 11		1.0	4.06 1	1,80 1,0	2.0	0 4,05	0 1.80 1	.0	0 2.0	1.0 2.0	1.0 469	9.3 1.0	1.0	A - Very Low Risk A - Very Low Bisk	1.0	A - Very Lov
POD 1 19 1 19 1 19 1 19 1 19 1 19 1 19 1	TP05 T4 513761	79123 0.3 B - Very Shallow (0.01-	0.5m) 5.06258	5.05258 0.0881	84 3.5 20 3.5	- 11	0,30	13	12.09 1	279 10	20	0 12,03	0 2,79		0 20	1,0 2,0	1.0 301	1 10	1.0		1,0	A - Very Low
POD 1 19 1 19 1 19 1 19 1 19 1 19 1 19 1			0.5m) 11.16258	11,36258 0.1983	14 3.5	11		1.2	8.24 1	1,37 1.0	2.0	.0 8.24	0 137		.0 2.0	1.0 2.0	1.0 169	13 12	1.0	A - Very Low Risk	1.0	A - Very Low
PP 2 53.99 590.2 0 1 1 1 1 1 1 2 1 2 1 3 4 4 4 4 4 4 4 4 4	TP09 T3 512389	79081 0.2 B - Very Shallow (0.01-	0.5m) 7.6724	7 6724 0 1336	09 3.5	- 11	0.20	1.2	12.02	2.00 1.0	2.0	.0 12.02	0 2.00 1		.0 2.0	1.0 2.0	1.0 268	10	1.0	A - Very Low Risk	1.0	
P13 T1				12 49517 0 2180		- 11	0.40	1,4	3,77	1.08 2.0	2.0	.0 3.77	0 1.06 2	0	10 2.0	1.0 4.0	2.0 103	3.1 2.0	2.0	B - Low Risk	4.0	
1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TP13 T1 512589	78911 0.1 B - Very Shallow (0.01-	0.5m) 6.30381	6 30381 0 1100	22 3.5	- 11	0.10	1.11	29.15	2,65 1,0	2.0	0 29.15	0 2,65		0 2.0	1.0 2.0	1.0 182	1.0	1.0	A - Very Low Risk	1.0	A - Very Low
	TP15 T1 512396	78989 0.3 B - Very Shallow (0.01-	0.5m) 3.12206	3.12206 0.054		11	0.30	1.3	19.50	1,00 1,0 4.50 1,0		19.50	0 450 1		0 20	10 20	1.0 351	10	1.0	A - Very Low Risk	1.0	A - Very Low
	177 177 177	177 177	177 71	177 177	177 17 630	7 12	77	177	177	177		177 1	77 177 17	7	177	177 177	177		177			
		3,600 0,000	14,773	15 0	4 11	4		5	207449	39631		207449 2	31631 4		4	2 8			4			
		3,600 0,000	14,773	15 0	0 0	4		4	207448	39531		207448 1	39631 3		2	1 6			3			
		Jule27 J#DIMU!	[7:092	7 [6	14 11	1		2	19484	220		p4464 1	205 1		14	1 [3			L			
1	inferred value e.g. nearest neighbour or guidance.								PoS C _U	Pactor of Safety Undrained Strength		roS c,	Pactor of Safety Undrained Strength									ĺ
	Formula driven			1					У	Bulk unit weight Depth to failure plane a		ly .	Bulk unit weight Depth to failure plane Slope angle									1

Appendix D – IWF Trial Pit Logs

(File Ref. 3188-A2-024; 603679 App D)

Inchamore WF, Co. Cork SI Trial Pit Logs

Borehole/ Trial	Soil (S) / Wa	ter (W) / Vap	our (V) S	amp	ling			INVESTIGATION	TP001	
Pit Design &	Sample number					1		POINT LOG NUMBER Client, Project, Location	JOD (Coillte), Inchamore W	/F Cork
Completion	& &		Š		₅			Minerex work item	A2	71 , COIK
	interval		AT.:	<u>.o</u>	ed £					
	(mbGL)		Wal (BH	cript (9	s us	vido	(ĝ	Page No.	1 of 1	
	(Sample 10 kg minimum)		al Pit sings	description strong)	ann: Spog	(ma	<u>=</u>	Date & time drilled / formed:	02/06/2021	
	,); Tri: 1 Aris C)	n & c	sym (sym	9 S	hic	Logged by (drawn by) [checked by]:		
	Red line = Single channel sample (from field)	No. No.	(BS)	angtl oder	for the last	etre	Jrap	Drilling / Trial pitting co. & equip		Arra D)
	Blue line = Composite	Non-Natural Ground	E du Schur	stre	end Ib a	in m leve	💆	Doc. Ref.	(File Ref. 3188-A2-024; 603679	App D)
	sample (generated in office or lab)	Percentage	d sal	اِرْ الرّ	dan leg	<u> </u>	<u>8</u>	Irish Transverse Mercator (ITM)		
	Green line = Grab sample (acquired on site)	(see below)	PID (ppm) Bagged sample (BS); Trial Pit Wall (TPW); Soil Core (SC); BH Arisings (BHA); Trial Pit Clumps (TPC)	Odour strength & descri (none, weak, moderate, strong)	Groundwater occurrence (See legend for symbols used for dry, damp and wet)	Depth in metres below ground level, also (maODM) & [Thickness]	Geology (graphical log)	Geological descripti	on	Natural / Made
N/A	, ,	N/A	N/A					PEAT/PEATY SOIL. Mediu	um Brown	N
						_				
						_				
						0.5 —		Sandy Gravelly CLAY w/ C	obbles. Medium Brown	N
						0.5 —				
						_				
								Boulders / Weathered Bed	rock	
						_				
						1.0 —				N
						_				
						_		FOLL We offer and Deduce	le / Decideless	
						_	1	EOH – Weathered Bedroc	k / Boulders	
						_	1			
						1.5 —	1			
							-			
						_	1			
						<u> </u>				
						_	1			
						2.0	1			
						_	1			
						_				
						_	1			
						_	1			
						2.5 —	1			
						_				
						_	1			
							-			
						3.0	1			
						l _				
						_	1			
						_	1			
						3.5 —	1			
						_	-			
						_	1			
						_]			
						-	1			
* Non		4al 0/ ! / `	l	l		4.0		A /B /C	/D /E	/ _F
	naterial %s with to					DOMINAN	NT GEOLO	GICAL / NON- / CO	LOUR STIFFNESS LAYER ID,	(NN
	LE % (ND): 1 = Brick ACMs (asbestos cont				es	Clav	COMPO Silt, Sand,	Gravel / GEOLOGICAL/(LB, MB	RECOVERY 8	& or
piping). 6 = Blue B		Saming material	- Julii 43		JU,		le, Boulder	deposit COMPONENT - Grey	S, DG) ST = Soft % recovery % >10mm et	tone \
DEGRADABLE %	(D): 7 = Plastic, 8 = N						CV	Clay - Silt - Sand - Musta Gravel - Cobble - Beige	rd S = Stiff	ione
	Ash & Clinker, 11 =	Charcoal, 12 =	Tarmaca	dam,	13 =			Boulder - Olive	\ vo = v. oan)	$\geq \downarrow$
Leather, 14 = Coal						Write addi		o notes - Orang	<u>e </u>	
**1-From hand held 0	GPS, 2-Estimated from go	ogle maps or 3-S	Surveyed wit	h theod	lolite.	etc as spa		NN = Nor	-natural ground (fill / made up ground / distr N = N	urbed natural latural ground
								Minerey Template Ref: Drill027, Tel: 0		CS 21/1/

Borehole/ Trial	Soil (S) / Wa	ter (W) / Vap	our (V) S	ampl	ing				P003	
Pit Design & Completion	Sample number):					POINT LOG NUMBER Client, Project, Location	OD (Coillte), Inchamore V	/F , Cork
	& interval		M	_	1 for			Minerex work item A2	2	
	(mbGL)		Vall (iptio	nsec nsec	MQ.	<u></u>	Page No. 1	of 1	
	(Sample 10 kg		Pit V	escr rong)	urrer 100s	low) o		2/06/2021	
	minimum)		(BS); Trial Pit Wall (TPW); BH Arisings (BHA); (TPC)	. & d ate, st	occu symt et)	s be	Pica Lica	Logged by (drawn by) [checked by]: SI	K	
	Red line = Single channel sample (from field)		(BS) HE (TPC	Odour strength & description (none, weak, moderate, strong)	Groundwater occurrence (See legend for symbols used for dry, damp and wet)	Depth in metres below ground level, also (maODM) & [Thickness]	Geology (graphical log)	Drilling / Trial pitting co. & equipmen		
	Blue line = Composite sample (generated in office	Non-Natural	mple SC);	stre ak, m	dwe lend lp ar	in m leve	© >	DOC. IXEI.	File Ref. 3188-A2-024; 603679	App D)
	or lab)	Ground	(pp	onr.	e leg	Hick In It	<u>6</u>	Irish Transverse Mercator (ITM)** 05		
	Green line = Grab sample (acquired on site)	Percentage	PID (ppm) Bagged sample (E Soil Core (SC); Trial Pit Clumps (8	(Se (Sp. 4)	De S []	ğ	Geological description		Natural / Made
N/A		N/A	N/A			_	1	PEAT/PEATY SOIL. Dark B	rown;	N
						_		Mixed/Disturbed		
						_				
						_				
						0.5 —				
						_				
						_				
						_				
						-		Sandy Gravelly CLAY. Brown	Grey	
						1.0 —				N
						-				 "
						_		Sandy Gravelly CLAY w/ Cobb	nles and Roulders	
						_		Blue Grey / Purple Grey.	oice and boulders.	
						_				N
						1.5				"
						1.5 —				
						_				
						_				
						_				
						_				
						2.0				
						_				
						-				
						_				
						_				
						2.5 —				
						_		Bigger Boulders		
						_	muq	55		
						_				
						3.0		EOH		
						_				
						_				
						_				
						_	1			
						3.5 —	1			
						-	1			
						_				
						_				
						_				
						4.0				
* Unreliable data. Ind	ication only.							A /B /C	/D /E	
4.4	•					DOMINAN	IT GEOLO COMPO	DNENT / DOMINANT /- Brown	R STIFFNESS LAYER ID, RECOVERY	
From hand held G	ro					Clay,	Silt, Sand, e, Boulder	denocit / CONFONLINI - GIE	ST = Soft STONE	/N
						CODDI	o, souluel	Clay - Silt - Sand (LG, MG, DG	F = Firm % >10mm s	tone \
								Gravel - Cobble Beige (tan) Boulder - Olive	VS = V. Stiff)	\bigcup
						Write addi			F Interp	retation
						on macrop etc as spa			ral ground (fill / made up ground / dist	urbed natural); latural ground)
L						· · ·	•		IN = N	ucural ground)

Borehole/ Trial	Soil (S) / Wa	ter (W) / Vap	our (V) S	ampl	ing			INVESTIGATION TP004	
Pit Design & Completion	Sample number							POINT LOG NUMBER Client, Project, Location JOD (Coillte), Inch	namore WF , Cork
Completion	&		: Wall (TPW); (BHA);	_	fo			Minerex work item A2	
	interval (mbGL)		'all (T HA);	otior	sed Sed	(MC		Page No. 1 of 1	
	(Sample 10 kg		oit W	scrij _{ong)}	rren ols u	ow naO[<u> 60</u>	Date & time drilled / formed: 02/06/2021	
	` minimum) ¯		PID (ppm) Bagged sample (BS); Trial Pit W Soil Core (SC); BH Arisings (B	Odour strength & description (none, weak, moderate, strong)	Groundwater occurrence (See legend for symbols used for dry, damp and wet)	Depth in metres below ground level, also (maODM) & [<i>Thickness</i>]	Geology (graphical log)	Logged by (drawn by) [checked by]: SK	
	Red line = Single channel		3S); 7 BH A TPC)	gth ¿	orsy Twe	tres alsc	aph	Drilling / Trial pitting co. & equipment Excavator	
	sample (from field) Blue line = Composite		1 9e (5	tren	vat and	vel,	(gi	Doc. Ref. (File Ref. 3188-A2-0)	24; 603679 App D)
	sample (generated in office or lab)	Non-Natural Ground	sam e (St	weak s	amp	d e ii) go	Irish Transverse Mercator (ITM)** 0513750, 057890	6
	Green line = Grab sample	Percentage	D (do.	y, d		l eo	Geological description	Natural /
N/4	(acquired on site)			OIE	Oles			DEAT/DEATY COLL Dark Dark	Made
N/A		N/A	N/A			_		PEAT/PEATY SOIL. Dark Brown	N
						_			
						_			
						_			
						0.5 —		Sandy CLAY. Medium Brown	N
						0.0			
						_		County CLAY Cour	
						_		Sandy CLAY. Grey	
						-			
						_			
						1.0 —			
									N
						_			
						_	- <u>-</u>	1	
						_			
						_			
						1.5			
						_			
						_			
						_			
						2.0			
						_			
						_			
						_			
						_	-1-1-1-		
						2.5 —			
						2.5 —		EOH - Big Boulders	
						_	1	2011 Big Bouldons	
						_	1		
						_	-		
						_	1		
						3.0]		
						_	1		
						_	1		
						_	1		
						3.5 —	1		
						_	1		
]		
						_	1		
						-	1		
*						4.0		 A /B /C /D /	 E /F
Unreliable data. Ind	ication only.					DOMINAN	NT GEOLO	GICAL / NON- / COLOUR STIFFNESS LA	YERID, (NN
** From hand held G	PS					Clave	COMPO Silt, Sand,	DNENT / DOMINANT /- Brown RE GROUND GEOLOGICAL (LB, MB, DB) (VST V SOF) ST	COVERY & or
							e, Boulder	deposit ST = Soft (LG, MG, DG) ST = Soft %	recovery 6 >10mm stone
							SV	Clay - Silt - Sand - Mustard S = Stiff Gravel - Cobble - Beige (tan)	- Ionini stone
								Boulder - Olive - Mottled	\longrightarrow
						Write addi		onotes Orange -	F Interpretation
						etc as spa		- ININ = Non-natural ground (fill / made up	ground / disturbed natural); N = Natural ground)

Borehole/ Trial	Soil (S) / Wa	ter (W) / Vap	our (V) S	ampl	ing			INVESTIGATION TP005	
Pit Design & Completion	Sample number							POINT LOG NUMBER Client, Project, Location JOD (Coillte), Inchamore	e WF , Cork
Completion	&		: Wall (TPW); (BHA);	_	for			Minerex work item A2	
	interval (mbGL)		/all (7 8HA);	ptior	sed	DM)		Page No. 1 of 1	
	(Sample 10 kg		Pit V gs (E	sscri ong)	rren ols u	о лаО	<u> </u>	Date & time drilled / formed: 02/06/2021	
	minimum)		Trial Arisin	& de e, str	ymb it)	o (n	ica	Logged by (drawn by) [checked by]: SK	
	Red line = Single channel sample (from field)		BH /	gth	or sy	als	aph	Drilling / Trial pitting co. & equipment Excavator	
	Blue line = Composite		G); (c)	stren ., mo	nd f	me svel,	g)	Doc. Ref. (File Ref. 3188-A2-024; 603	679 App D)
	sample (generated in office or lab)	Non-Natural Ground	ppr I sam re (S	weak	lege amp	ickn eri	og o	Irish Transverse Mercator (ITM)**513761, 579123	
	Green line = Grab sample (acquired on site)	Percentage	PID (ppm) Bagged sample (BS); Trial Pit W Soil Core (SC); BH Arisings (B	Odour strength & description (none, weak, moderate, strong)	Groundwater occurrence (See legend for symbols used for dry, damp and wet)	Depth in metres below ground level, also (maODM) & [Thickness]	Geology (graphical log)	Geological description	Natural / Made
N/A	(acquired on site)	N/A	N/A	<u> </u>				PEAT/PEATY SOIL. Dark Brown	N
		N/A	1071			_			
						_			
						_			
						_		Sandy Gravelly CLAY w/ boulders. Medium Brown	N
						0.5 —		Brown	"
						_	-1-1-1-1		
						-		1	
						1.0 —		1	
						_		1	
						_		1	
								-	
								-	
						_			
						1.5 ——			
						_		-	
						_			
								1	
						-		1	
						2.0		1	
						_		1	
						_		1	
								7	
						_		7	
						2.5 —			
						_		7	
						_			
						_			
						3.0 —			
						_			
						_			
						_		1	
								1	
						_		1	
						3.5 —		1	
						_			
						_		7	
						_		7	
						_			-
						4.0	3	EOH – Boulders	
* Unreliable data. Ind	ication only.					DOM	T 050: 5	A /B C /D E	/ F
** From hand held G						DOMINAN	COMPO	ONENT / DOMINANT /- Brown / DECOVE	RY& ∖or
I Tom harra neid G	. •						Silt, Sand, e, Boulder	deposit / COMPONENT - Grey ST = Soft % recover	ery \N
								Clay - Silt - Sand Cravel - Cobble - Mustard Cravel - Cobble - Mustard S = Stiff	
								Boulder - Cobble - J - Beige (tan) VS = V. Stiff)	
						Write addi		- Mottled - Orange F Inte	erpretation
						on macrop etc as spa		NN = Non-natural ground (fill / made up ground	/ disturbed natural); = Natural ground)

Borehole/ Trial	Soil (S) / Wa	ter (W) / Vap	our (V) S	ampl	ling			INVESTIGATION	TP007	
Pit Design &	Sample number							POINT LOG NUMBER Client, Project, Location	JOD (Coillte), Inchamore	WF Cork
Completion	&		t Wall (TPW); (BHA);		ا ق			Minerex work item	A2	,
	interval		₽;;	ioi	ed "	ŝ		Page No.	1 of 1	
	(mbGL)		Wa (BH	description strong)	sn s	≥ 0	(ĝ		03/06/2021	
	(Sample 10 kg minimum)		al Pit	desc	an sign	elo (ma	<u>=</u>	Date & time drilled / formed:		
	•		; Trik	ate, s	sym (st	S S	je	Logged by (drawn by) [checked by]:	SK	
	Red line = Single channel sample (from field)		(88) FP (7F)	ngth	d for s	etre 1, al:	l g	Drilling / Trial pitting co. & equipn		
	Blue line = Composite		a le :: our sdu	stre!	wa an an	ess	_ <u>_</u>	Doc. Ref.	(File Ref. 3188-A2-024; 6036)	79 App D)
	sample (generated in office or lab)	Non-Natural Ground	sam se (S	kea	amk	 	ĝ	Irish Transverse Mercator (ITM)**	0512950, 0578987	
	Green line = Grab sample	Percentage	PID (ppm) Bagged sample (BS); Trial Pit W Soil Core (SC); BH Arisings (B	Odour strength & (none, weak, moderate,	Groundwater occurrence (See legend for symbols used for dry, damp and wet)	Depth in metres below ground level, also (maODM) & [Thickness]	Geology (graphical log)	Geological description	n	Natural /
	(acquired on site)			OIS	ଓ ଞ୍ଚ	ഥിടെ≪	υ	-		Made
N/A		N/A	N/A			_		PEAT/PEATY SOIL. Dark E	Brown	N
						_				
								Sandy Gravelly CLAY. Med	ium Brown	N
						_	-1-1-1-			
						0.5 —	<u></u>			
						_		Sandy Gravelly CLAY with	cobbles. Blue grey	
						_	Ō :-:-:			
							•			
						_	<u> </u>			
						-				
					1	1.0 —				
							•			N
						_				
						_		Iron stain		
						_	1-1-1-1			
						_				-
						1.5		Iron stain		
						_				
						_	I-I-I-I			
						_				
						_				
						2.0		Iron stain		
						_	-2-2-3			
							-I-I-I-i			
							[- []-:			
						_				
						_	:			
						0.5	<u> </u>			
						2.5 —	-:-:-:			
						_				
						_				
					l]				
						-	[-[-[-]			
						_				
] , ,	 1959			
						3.0 —	P-0-0-0			
						_				
							-			
					1			EOH - Weathered Bedrock	/ Boulders	
					l	-	1			
						_				
						3.5 —				
						3.3 —				
						-	1			
						_				
					1]				
					l	-	1			
						_				
				<u></u>		4.0		<u> </u>		
* Unreliable data Ind	ligation only						•	A /B /C	/D /E	/F
Unreliable data. Ind	ication only.					DOMINAN	IT GEOLO	GICAL / NON- / COL	OUR STIFFNESS LAYER ID,	(NN
** From hand held G	PS					OI	COMPO	Gravel / GEOLOGICAL/(LB, MB,	DB) VST - V. Soft STONE	Y&∖or N
							Silt, Sand, e, Boulder	deposit COMPONENT - Grey	\ ST = Soft % recover	y \
								Clay - Silt - Sand (LG, MG,	F = Firm % >10mm	
							3/1	Gravel - Cobble - Beige (1 Boulder - Olive	(an) $VS = V. Stiff)$	1
						Write addi	itional !	Mottled	\	
						. vvrite addi	uonai heli			
						on macrop	ores, mot	45 \		pretation

Borehole/ Trial	Soil (S) / Wa	ter (W) / Vap	our (V) S	ampl	ling			INVESTIGATION	TP012	
Pit Design & Completion	Sample number							POINT LOG NUMBER Client, Project, Location	JOD (Coillte), Incham	nore WF , Cork
Completion	. &		PW);		<u>5</u>			Minerex work item	A2	* -
	interval		E :(∀	tion	e ge	Σ		Page No.	1 of 1	
	(mbGL) (Sample 10 kg		it Wa	crip (gr	enc Is us	3 0 €	(gol	Date & time drilled / formed:	03/06/2021	
	minimum)		ial Pi	des	nbo	∭ j <mark>el</mark> o	Geology (graphical log)	Logged by (drawn by) [checked by]:		
	Red line = Single channel); Tr 'C)	h & rate,	syn (et)	es) ohic			
	sample (from field)		(BS) (BS) (TF) (TF)	engt Jode	ng Te	netr ક્રી, a	Jrap	Drilling / Trial pitting co. & equip	ment Excavator (File Ref. 3188-A2-024; 6	303670 App D\
	Blue line = Composite sample (generated in office	Non-Natural	mple SC)	stre	dwig lend	in m leve	<u>⊛</u>	Doc. Ref.		03079 App D)
	or lab)	Ground	(pp	<u> </u>	g = 6	Hick in the	<u>§</u>	Irish Transverse Mercator (ITM)		
	Green line = Grab sample (acquired on site)	Percentage	PID (ppm) Bagged sample (BS); Trial Pit Wall (TPW); Soil Core (SC); BH Arisings (BHA); Trial Pit Clumps (TPC)	Odour strength & description (none, weak, moderate, strong)	Groundwater occurrence (See legend for symbols used for dry, damp and wet)	Depth in metres below ground level, also (maODM) & [Thickness]	Gec	Geological descripti	on	Natural / Made
N/A		N/A	N/A			_		PEAT/PEATY SOIL. Dark	Brown	N
						_	***********			
						0.5 —	-	Weathered Bedrock		N
						0.5 —	-	EOH – Weathered Bedroc	k	
						_	-			
						_]			
						1.0 —	-			
						_	1			
						_				
						_	1			
						1.5 —				
						_	-			
						_	1			
						2.0	1			
						-	-			
						_	1			
						_	-			
						2.5 —	1			
						_				
						_	-			
						_	1			
						3.0 —	1			
						-	-			
						-	1			
						3.5 —				
						_	-			
						-	1			
						_]			
<u> </u>						4.0	1) A /D / C	/5 /-	
* Unreliable data. Ind ** From hand held G						Clay,	NT GEOLO COMPO Silt, Sand, ble, Boulder	Gravel, deposit DOMINANT - Brown (LB, ME COMPONENT - Grey	(ST - V. Soft STON	RID, NN VERY & Or E N
						R	SK	Clay - Silt - Sand Gravel - Cobble - Boulder - Olive - Mottle	rd (tan) S = Stiff VS = V. Stiff)	0mm stone
						on macro	litional help pores, mo ace allows	w: \	ne Fla n-natural ground (fill / made up ground)	nterpretatio und / disturbed natura N = Natural groun

Borehole/ Trial	Soil (S) / Wa	ter (W) / Vap	our (V) S	ampl	ling			INVESTIGATION POINT LOG NUMBER	TP014	
Pit Design & Completion	Sample number							Client, Project, Location	JOD (Coillte), Inchamore	WF , Cork
Completion	&		W.		وَ			Minerex work item	A2	
	interval		E :(¥	tion	e de	Σ		Page No.	1 of 1	
	(mbGL) (Sample 10 kg		S (B)	Crip	sn s	> 0	(go	Date & time drilled / formed:	03/06/2021	
	minimum)		ial Pi sings	des	cur Jpo	<u>e</u> <u>e</u>	<u>77</u>	Logged by (drawn by) [checked by]:		
	Red line = Single channel		C): Tri	h & rate,	syn (syn	se p So) hic			
	sample (from field)		(BS	engt lode	a te	el, a	Ja l	Drilling / Trial pitting co. & equip	ment Excavator (File Ref. 3188-A2-024; 60367	0 Ann D)
	Blue line = Composite sample (generated in office	Non-Natural	SC Dela	stre	end	in m leve		Doc. Ref.		a Abb n)
	or lab)	Ground	(pp	ja š	da e	fi a lit	<u>S</u>	Irish Transverse Mercator (ITM)*		
	Green line = Grab sample (acquired on site)	Percentage	PID (ppm) Bagged sample (BS); Trial Pit Wall (TPW); Soil Core (SC); BH Arisings (BHA); Trial Pit Clumps (TPC)	Odour strength & description (none, weak, moderate, strong)	Groundwater occurrence (See legend for symbols used for dry, damp and wet)	Depth in metres below ground level, also (maODM) & [Thickness]	Geology (graphical log)	Geological descripti	on	Natural / Made
N/A	(asquired sit sits)	N/A	N/A					PEAT/PEATY SOIL. Dark	Brown	N
						_				
						_		TP abandoned, deep peat		
						_		point <5m from TP = 2.0mb	oGL. See peat probing	
								data for area.		
						0.5 —				
						_				
						-				
						_	-			
						1.0				
						1.0 —				
						-				
						l <u> </u>	===			
]				
						_				
						_				
						1.5				
						_				
						_				
						_	-			
						2.0				
							-			
						_				
						_				
						_				
						2.5 —				
						_				
						_				
						_				
]				
						-				
						3.0				
						_				
						_				
						-				
						_				
						3.5				
						_				
						_				
						_				
						_				
*						4.0		A /B /C	/D /E	
Unreliable data. Indi	·-					DOMINAN		GICAL / NON- / COL	OUR STIFFNESS LAYER ID,	(NN
** From hand held G	PS						COMP	ONENT / DOMINANT /- Brown	RECOVERY	
							Si l t, Sand, e, Boulder	denosit / COMPONENT - Grey	\ST = Soft % recovery	\
								Clay - Silt - Sand (LG, MG	rd F = Firm % >10mm	
							SK	Gravel - Cobble Beige Boulder - Olive		_ \
						Write addi	tional hal-	/ - Mottle	d \	
						on macrop	ores, moi	w: \	e	pretation
						etc as spa				Natural ground

Borehole/ Trial	Soil (S) / Wa	ter (W) / Vap	our (V) S	ampl	ling			INVESTIGATION TP015	
Pit Design &	Sample number					1		POINT LOG NUMBER Client, Project, Location JOD (Coillte), Inchamo	re WE Cork
Completion	&		Š.		.5			Minerex work item A2	TO THE , COIN
	interval		E	<u>io</u>	ed t	Ξ			
	(mbGL)		Wal (BH	cript (9	Su s] ⊒O	(ĝ	Page No. 1 of 1	
	(Sample 10 kg minimum)		al Pit ings	desc	bols pols	ua e	=	Date & time drilled / formed: 03/06/2021	
			PID (ppm) Bagged sample (BS); Trial Pit Wall (TPW); Soil Core (SC); BH Arisings (BHA); Trial Pit Clumps (TPC)	Odour strength & description (none, weak, moderate, strong)	Groundwater occurrence (See legend for symbols used for dry, damp and wet)	Depth in metres below ground level, also (maODM) & [Thickness]	Geology (graphical log)	Logged by (drawn by) [checked by]: SK	
	Red line = Single channel sample (from field)		(BS) FP (F)	ngth	đ gr	_ alte_	l g	Drilling / Trial pitting co. & equipment Excavator	
	Blue line = Composite	NI NI. t	1 e c c c c c c c c c c c c c c c c c c	stre.	wa end	evel ess	D (5)	Doc. Ref. (File Ref. 3188-A2-024; 60	3679 App D)
	sample (generated in office or lab)	Non-Natural Ground	sarr Sarr Clui	Mea⊧	ami ege	4 5 7 1 1 1 1 1 1 1 1 1	ĝ	Irish Transverse Mercator (ITM)**512439, 578989	
	Green line = Grab sample	Percentage	D (do do	7, d		6	Geological description	Natural /
	(acquired on site)		a S B	OLE	ଭାର୍ଚ୍ଚ	വട∞	9		Made
N/A		N/A	N/A			_		PEAT/PEATY SOIL. Dark Brown	N
						_			
						_	100100100		N N
						_		Sandy Gravelly Cobbly CLAY, Brown	
						0.5 —	ere ere		
								EOH. Bedrock	
						-	1		
						-	1		
						_ _ ا			
						1.0 —	1		
						_			
						-]		
						-	ł		
						_			
						4.5			
						1.5 ——	1		
						-			
						_			
						-	1		
						_]		
						2.0	ł		
						_			
						_	1		
						_	1		
						_			
						2.5 —	ł		
						_			
						-]		
						-	-		
						_			
						l <u>.</u> .			
						3.0 —	1		
						 			
						l _			
						<u> </u>	1		
						l _			
] , ,			
						3.5 —	1		
						-	-		
						_			
						-	1		
						 			
						4.0			
* Uproliable data Ind	liantian anti-				•			A /B /C /D /E	/_F
Unireliable data. Ind	lication only.					DOMINAN		GICAL / NON- COLOUR STIFFNESS LAYER	ID, (NN
** From hand held G	iPS					Class	COMPO Silt, Sand,	ONENT / DOMINANT /- Brown RECOVI	RY& \or N
							Silt, Sand, e, Boulder	deposit / COMPONENT - Grey ST = Soft % recov	rery \
								Clay - Silt - Sand (LG, MG, DG) F = Firm % >10r	nm stone
							3/16	Gravel - Cobble - Beige (tan) S = Stiff VS = V. Stiff)	\
						Write addi	itional hal-	/ - Mottled	
						on macrop	ores, mot	titling - Orange F Int	erpretation
						etc as spa	ce allows		N = Natural ground

= 0.0	NVESTIGATION	TP016	
Sample number	In the control of the	JOD (Coillte), Inchamore WF	Cork
Completion & Sample number & Signature & Cli	linerex work item	A2	, oon
interval E G G G G G G G G G			
(mbGL)	age No.	1 of 1	
(Sample 10 kg Hid a large state of the sta		03/06/2021	
Arisis (% & d te, s d	ogged by (drawn by) [checked by]:	SK	
Completion & interval (mbGL) (Sample 10 kg minimum)	rilling / Trial pitting co. & equipm		
Blue line = Composite Call Call	oc. Ref.	(File Ref. 3188-A2-024; 603679 Ap	op D)
sample (generated in office or lab)	sh Transverse Mercator (ITM)**	512293, 578980	
or lab) Green line = Grab sample Green line = Grab sample Percentage Percentage Graph G	eological description		Natural .
(acquired on site) Torontage 리종 등본 이용 이상 등 리 등 이 등		N	Made
N/A N/A N/A P	PEAT/PEATY SOIL. Dark B	Brown	N
390000			
			N
Sa Sa	andy Gravelly Cobbly CLA	Y, Brown	
			
0.5 —	EOH. Bedrock.		
_			
1.0 —			
_			
1.5			
_			
-			
_			
2.0			
<u> </u>			
2.5			
_			
3.0 —			
3.5			
4.0			
	A /B /C	/D /E	/ F
Unreliable data. Indication only.	CAL / NON- / COLO	OUR STIFFNESS LAYER ID,	(NN
** From hand hold CDS COMPONEN	ENT / DOMINANT /- Brown GEOLOGICAL (LB, MB,	/ IRECOVERY &	or N
From hand field GF5	osit / COMPONENT/ - Grey	\ST = Soft % recovery	1
** From hand held GPS Clay, Silt, Sand, Grav Cobble, Boulder depo			١.
	Clay - Silt - Sand - Mustard	s = Stiff	ie \
	Clay - Silt - Sand Gravel - Cobble - Beige (t	s = Stiff	le \
Cobble, Boulder depo	Clay - Silt - Sand Gravel - Cobble - Boulder Cley Motty - Mustard - Beige (t - Olive - Mottled	s = Stiff VS = V. Stiff)	
	Clay - Silt - Sand Gravel - Cobble - Boulder - Golive - Mottled - Orange	tan) $S = Stiff$ VS = V. Stiff	etatio

GENERAL LEGEND, ABBREVIATIONS AND **INSTALLATION DETAILS**

BEDROCK

Metamorphic bedrock Ianeous bedrock

Mudstone / Shale bedrock

Brown (Light, medium, dark)

Grey (Light, medium, dark)

Siltstone / Sandstone bedrock

Limestone bedrock

COLOUR

Mustard

Olive

Mottled

Orange

Beige (tan)

GRAIN SIZE (Soil)

Clay (% of) C(20) Silt (% of) St(20) Sand (% of) Sd(20) Gravel (% of) G(20) Sand (Fine to Medium) Sd_{F-M}

Gravel (Fine to Coarse G_{F-C SA-A} Subangular to angular)

OVERBURDEN

(Description uses BS 5930 and GSI guidelines)

BOULDER(S) (>200mm)

COBBLES (60 to 200mm)

GRAVEL (Homogeneous larger sized particles from 2 to 60 mm)

SAND (General, if without grain size description) Particle sizes: 2 to 0.06mm. Three sub-categories distinguishable to the eye)

Coarse SAND (2-0.6mm)

Medium SAND (0.6-0.2mm)

Fine **SAND** (0.2-0.06mm)

MONITORING POINT COMPLETIONS

TS/C1/PH1 Terminal Site/Couple no./Phreatic no. PR/C2/P2 Peat Repository/Couple no./Piezometer no.

Von Post humification scale

Push-on cap Screen Casing Porous tip Drive cone

Piezometer no. and Phreatic tube no.

Bentonite pellets Cement-Bentonite grout

> Gravel pack, nominal 2-5mm in diameter Damp, wet and water strike respectively

1/2/03 Static water table (with date measured and hours since installation)

CLAYS (<0.002mm)

CONCRETE

TARMACADAM

CRUSHED STONE or AGGREGATE

LANDFILL (eg plastic, glass, wood, domestic waste, concrete etc.)

FILL OR BACKFILLED GROUND (unspecified)

COLLAPSED FORMATION (with possible voids) or DRILL CHIPPINGS / MATERIAL RETURNED BY AIR FLUSH DRILLING

LOSS (Blank - white)

TOP SOIL

PEAT (General) (with descriptions such as colour, plant remains evident, distinct H₂S smell etc) (H (Von Post) value associated commonly)

PLAN SKETCHES

TP1

Hand dug trial pits / Shallow pit excavations (JCB) Percussion Window Sampler (PWS) boreholes

100 BG 99.791 FID/PID in ppm Hydrocarbons with BG = background Reduced levels - maOD Malin

Oil pipeline

Storage tanks (Overground and underground)

MONITORING POINT DESIGN FOR PEAT SUBSOILS

Push-on, female cap

The cap is loosely fitted to allow easy removal. The piezometer is labelled using indellible ink inside and outside the cap. A small hole is drilled in the side to enable air movement in and out of the piezometer.

The upstand is the height of the casing above ground level in meters. The height depends on local groundwater and surface water circumstances. The piezometer number is scrapped onto the side of the casing near the cap as with time the writing on the cap wears off. Upstands vary from 0.3 to 1.0m in height. The convention is allow a higher upstand for those piezometers positioned at a higher level.

The casing is black or dark grey coloured, flush-threaded, uPVC. The OD is 26.80mm and the ID is 18.40. The casing is flush-threaded to the piezometer tip.

Tube or Piezometer tip

This section is installed opposite the required formation. There are two sections to the piezometer tip. The inner tube section is 18.40mm ID, white in colour and involves extruded microporous polyethylene. The outer comprises grey or black coloured uPVC with 10 x 0.013m diameter holes per 0.10m of piezometer tip. Therefore the surface area exposed to the formation (peat) is small. The piezometer tube tip is flush-threaded, either male or female, to the piezometer casing. Threaded part is 0.03m long. The phreatic tube tip is longer than the piezometer tube tip to allow for greater water level fluctuations.

0.045 (threaded section of this is 0.03m long) for phreatic tube 0.35 for piezometer 0.25 0.77 0.03

Ground level

Drive cone

This is grey coloured, solid, uPVC, pushed or screwed into the tube or piezometer tip. No glue has been used. If the ground is soft, a push-in button cap may be used instead of a drive cone.

NOTES:-

The phreatic tubes are pushed by hand into the peat. The piezometers are pushed or driven into the peat and mineral soil after a narrow diameter hole has been formed using overburden drilling (Cobra or Percussion Window Sampler) / coring equipment (Gouge corer). The tubes and piezometers have three main functions: water table measurements, water sampling, permeability measurements.

Drill-027.ppt (CS 21/1/19)

Appendix E – IWF Trial Pit and Site Photos

(File Ref. 3188-A2-008; 603679 App E)

Inchamore WF, Co. Cork SI Trial Pit Photos

Appendix E – IWF Trial Pit and Site Photos TP001

(File Ref. (File Ref. 3188-A2-008; 603679 App E))

Appendix E – IWF Trial Pit and Site Photos TP002 (File Ref. 3188-A2-008; 603679 App E)

File Ref. 3188-A2-008; 603679 App E

Appendix E – IWF Trial Pit and Site Photos TP003

(File Ref. 3188-A2-008; 603679 App E)

File Ref. 3188-A2-008; 603679 App E

Appendix E – IWF Trial Pit and Site Photos TP004

(File Ref. 3188-A2-008; 603679 App E)

File Ref. 3188-A2-008; 603679 App E